Montagem de um sistema optoeletrônico para medida da rotação do plano de polarização da luz

Leduc Hermeto de Almeida Fauth, Pablo Diniz Batista

Resumo


Este trabalho apresenta detalhes de um sistema optoeletrônico para medida de rotaçãao do plano de polarização da luz. Foi desenvolvido um circuito eletrônico para medir a intensidade luminosa usando um fotodetector em conjunto com outros componentes ópticos. Um porta amostra foi projetado utilizando uma lente de quartzo acoplada em uma tampa e conectada a um tubo de PVC. O diferencial dessa proposta é que caminho óptico pode ser facilmente modificado permitindo que diferentes comprimentos sejam estudados. Este arranjo possibilita determinar a concentração de substâncias opticamente ativas em solução aquosa. O desempenho do sistema de medidas é investigado considerando a sensibilidade e o limite de detecçãao. Este trabalho é desenvolvido tendo como base o paradigma open source hardware e, portanto, toda a documentação estará disponível para que possa ser utilizada e aprimorada pela comunidade científica.

Texto completo:

PDF

Referências


Lima, V. L. E. (1997). Os fármacos e a quiralidade: uma breve abordagem. Qu´ımica Nova, 20(6), 657-663.

Tompkins, H. G., & Irene, E. A. (2005). Handbook of ellipsometry. Norwich, NY: William Andrew Pub.

Carlin, N., Szanto, E., Seale, W., Jorge, F., Souza, F., Bechtold, I., & Gasques, L. (2005). Birrefringˆencia em placas de onda e atividade ´optica de uma soluc¸ ˜ao de ac¸ ´ucar. Re-vista Brasileira de Ensino de F´ısica, 27(3). doi:10.1590/s0102-47442005000300008.

Sousa, F. B., Vianna, S. S., & Santos-Magalhaes, N. S. (2006). A new approach for improving the birefringence analysis of dental enamel mineral content using pola-rizing microscopy. Journal of Microscopy, 221(2), 79-83. doi:10.1111/j.1365-2818.2006.01547.x.

Medeiros, R. D., Soares, J., & Sousa, F. D. (2012). Na-tural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence. Journal of Microscopy, 246(2), 177- 189. doi:10.1111/j.1365-2818.2012.03609.x.

Kasetty, S., Rammanohar, M., & Ragavendra, T. R. (2010).

Dental Cementum in Age Estimation: A Polarized Light and Stereomicroscopic Study. Journal of Forensic Sciences, 55(3), 779-783. doi:10.1111/j.1556-4029.2010.01363.x.

Anwar, S., & Firdous, S. (2016). Optical Diagnosis Of Dengue Virus Infected Human Blood Using Mueller Ma-trix Polarimetery. ( ´Optica e Espectroscopia), 121(2), 348- 352. doi:10.1134/S0030400X16080208.

Hall, J. S. (1948). A photoelectric polarimeter. The Astronomical Journal, 54, 39. doi:10.1086/106153.

Luna, H. G. (1985). Polarimetric observations of IOTA and Theta 2 Orionis. Astrophysical Letters, 24, 211-216.

Brosseau, C. (2010). Polarization and Coherence Optics: Historical Perspective, Status, and Future Di-rections. Progress in Optics, 149-208. doi:10.1016/s0079- 6638(10)05408-9.

Lyle, R. E., & Lyle, G. G. (1964). A brief history of polarimetry. Journal of Chemical Education, 41(6), 308.

doi:10.1021/ed041p308.

Azzam, R. (2011). The intertwined history of polarimetry and ellipsometry. Thin Solid Films, 519(9), 2584-2588. doi:10.1016/j.tsf.2010.12.072.

Da Piedade, M. E. (1993). Polarimetria. Boletim da Sociedade Portuguesa de Qu´ımica, 48, 36-38.

Brode, W. R., & Jones, C. H. (1941). A Recording Spectrophotometer and Spectropolarimeter*. Jour-nal of the Optical Society of America, 31(12), 743. doi:10.1364/josa.31.000743.

Rudolph, H. (1955). Photoelectric Polarimeter Attachment. Journal of the Optical Society of America, 45(1), 50.

doi:10.1364/josa.45.000050.

Willey, E. J. (1943). A Photoelectric Polarimeter. Journal of Scientific Instruments,20(5), 74-75. doi:10.1088/0950- 7671/20/5/302.

Gillham, E. J. (1957). A high-precision photoelectric polarimeter. Journal of Scientific Instruments, 34(11), 435-439.

doi:10.1088/0950-7671/34/11/302.

Olson, B. (1973). A Precision Photoelectric Azimuthal Polarimeter. Optical Engineering, 12(3). doi:10.1117/12.7971640.

MICROCHIP, AN1494 - Using MCP6491 Op. Amps for Photodetection Applications, (PDF).

Cote, G., Fox, M., & Northrop, R. (1992). Noninvasive optical polarimetric glucose sensing using a true phase mea-surement technique. IEEE Transactions on Biomedical En-gineering, 39(7), 752-756. doi:10.1109/10.142650.

Feng, C., Huang, Y., Chang, J., Chang, M., & Chou, C. (1997).

A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement. Optics Communica-tions, 141(5-6), 314-321. doi:10.1016/s0030-4018(97)00209- 5.

Lin, J., Chen, K., & Su, D. (2004). Improved method for measuring small optical rotation angle of chi-ral medium. Optics Communications, 238(1-3), 113-118. doi:10.1016/j.optcom.2004.04.029.

Lo, Y., & Yu, T. (2006). A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal. Optics Communications, 259(1), 40-48. doi:10.1016/j.optcom.2005.08.061.

Yeh, Y. (2008). Real time measurement of glucose concentration and average refractive index using a laser inter-ferometer. Optics and Lasers in Engineering, 46(9), 666-670. doi:10.1016/j.optlaseng.2008.04.008.

PEARCE,J.M. Building Research Equipment with Free, Open-Source Hardware, Science, Vol: 337, 14 September 2012.

FISHER, D.K.; GOULD, P.J. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research, Modern Instrumentation, 2012, 1, 8-20.

HARNETT,C. Open Source Hardware for Instrumentation

and Measurement, IEEE, Instrumentation & Measurement Magazine, (2011).

PURDON,P.L. et al., An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI, Journal of Neu-roscience Methods, 175, 2008, pp. 165–186.

CHRISTIAN,W.; ESQUEMBRE,F.; BARBATO,L. Open Source Physics, Science, Vol: 334, 25 November 2011.

PEARCE,J.M. Commentary: Open-source hardware for research and education, Physics Today, 66, (11), 8, 2013, doi: 10.1063/PT.3.2160.

ANZALONE,G.C.; GLOVER,A.G.; PEARCE,J.M. Open-Source Colorimeter, Sensors, 2013, 13, 5338- 5346.doi:10.3390/s130405338.

KELLEY,C.D. et al. An Affordable Open-Source Turbidimeter, Sensors, 2014, 14, 7142-7155; doi:10.3390/s140407142.

KOENKA,I.J.; S ´AIZ,J.; HAUSER,P.C. Instrumentino: An open-source modular Python framework for control-ling Arduino based experimental instruments, Computer Physics Communications, 185, 2014, pp. 2724–2729.

RORDEN,C.;HANAYIK, T. StimSync: Open-source hardware for behavioral and MRI experiments, Journal of Neuroscience Methods, 227, 2014, pp. 90–99.

URBAN,P.L. Open-Source Electronics As a Technological Aid in Chemical Education,. J Chem. Educ. 2014, 91, pp.

–752.

WIJNEN,B.;HUNT,E.J.;ANZALONE,G.C. JM Pearce Open-Source Syringe Pump Library, PLOS ONE, September 2014,v. 9,n. 9.

VAN DER BIJ,E. et al. How to create successful Open Hardware projetcts, Topical Workshop on Electronics for Particle Physics, 2013, 23–27 september 2013,perugia, Italy.

BONACCORSI, A.; ROSSI, C. Why Open Source software can succeed, Research Policy, 32, 2003, pp. 1243–1258.




DOI: http://dx.doi.org/10.7437/nt-cbpf.v8i2.314