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Multiscale Matching of Micro-CT images using Pattern Recognition and Hu moments
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Hu invariant moments have been widely used in pattern recognition applications. In Digital Rock Physics
applications several analysis are evaluated in different scales and an integrated approach is needed. In the current
work, we present a study of microtomographic images from geological plugs and discuss a simple algorithm
to match shapes in different scales. One analyze the efficiency of the matching algorithm comparing patterns
obtained in high resolution images with its lower resolution version, and also with noise added.
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1. INTRODUCTION

The development of scientific and technological
instrumentation lead to a huge volume of data to be analy-
zed and correlated. In particular, for the Geosciences area
the instrumentation is applied to the study of rocks and soil
using several techniques for observations. In the last years,
the computed microtomography (µCT) and image pattern re-
cognition have been widely introduced in different applicati-
ons inside Geosciences [see, e.g., [1, 2]]. In particular, some
of these applications aim the study of petrophysical parame-
ters which are related to rocks and soils. Between these pa-
rameters, the porosity and the permeability are the principal
targets of many studies [3, 4].

The µCT is a non-destructive imaging method that
allows investigating the structure of samples with a high spa-
tial resolution [5]. As pointed out by Kaestner in 2008 [6],
the principal advantage of this method is the fact that the
sample can be repeatedly scanned under different initial con-
ditions, which allows the process to be spatially and tempo-
rally monitored. The principal results obtained by using µCT
are strongly dependent of two factors. The first is related to
the instrumental resolution (tomographer resolution), while
the second one is associated to the image pattern recognition
technique used in order to process the acquired data [7]. The
aim of these techniques is to classify a pattern or describe ob-
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jects in an image using a set of features. A typical problem in
the field of Pattern Recognition is that the set of objects used
to define the pattern should be as representative as possible.
Furthermore, the characteristics used to identify the patterns
should be uncorrelated.

An approach that has been widely used in many ap-
plications related to Patterns Recognition is the multireso-
lution analysis1, aimed at the image interpretation invariant
to its scale. Geofrey [11] suggests that the multiresolution
analysis is composed of two fundamental components: (1)
the generation of a multiresolution representation; (2) the in-
formation extraction. Regarding the multiresolution analy-
sis, there exist many different computational techniques (or
descriptors) which can be used in order to recognize scale-
invariant patterns in images. Among these methods or tools
we can highlight the Hu Moments [12], Zernick Moments
[13], Fourier Transform [14], Pulse Coupled Neural Network
[15], among others. In particular, in this work we have cho-
sen to use the Hu Moments (see details in section 2.1) since
this technique not only has been often used in patterns re-
cognition, as also it is invariant under translation, rotation
and scale (TRS) transformations.

This work reviews the principal pattern recognition
techniques used in the processing of images (image enhan-
cement, features extraction, besides others) and methods of
invariant features extraction, addresses the strength of the Hu
Moments shape descriptors by joining these tools and techni-
ques into a multiresolution background to recognize patterns
in µCT images from geological plugs of sedimentary rocks.

The work is organized as follows. In section 2 it is

1 Example of multi-resolution techniques: template matching [8], content-
based image retrieval (CBIR) [9] and image registration [10].
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shown a brief summary on image pattern recognition. Lat-
ter, in subsection 2.3 the principal properties about the Hu
moments are shown and discussed. Section 3.2 describes the
methods and techniques used to process the data, while in
subsections 3.2 and 3.4 discuss the principal results obtained
in µCT images from geological plugs with these methods.
Finally, the conclusions and perspectives are drawn.

2. PATTERN RECOGNITION

There exist many pattern recognition techniques
[16] which have been used in several expertise areas. Among
them, one in particular, which has received much attention in
recent years is the application and characterization of pat-
tern recognition for image processing [14]. This was pos-
sible due to the development of computer technology, both
in hardware and in software, which has allowed capturing
and to storage different types of images. Actually, the image
processing is applied in several different fields, for example,
medical image, remote sensing, biometric recognition, auto-
matic inspection of industrial components, and so on [17].
Nevertheless, the complexity of the procedures related with
image processing, besides the large quantity of data require
more efficient techniques and algorithms to processing ima-
ges.

Many authors have writing relevant articles pointing
out the principal definitions and technical details about pat-
tern recognition. In this sense, Bishop [18] defines the pat-
tern recognition as the art of make predictions from data by
using probabilistic and statistical tools, computational geo-
metry, machine learning and signal processing. Theodori-
dis [19] highlights the importance of the machine learning
for pattern recognition. Also, he affirms that the machine
learning is a central part of many intelligence machine lear-
ning systems which are built for decision making. Finally,
we can state that pattern recognition is one of the main to-
ols of image processing systems. Its principal objective is to
describe the pattern through statistical information extracted
from the images pixels.

2.1. Pattern Recognition Systems Steps

As previously mentioned, pattern recognition is the
essential part of any image analysis system. Such a system
should be able to recognize patterns that are equal under se-
veral geometric transformations, like rotation and/or transla-
tion. The design of a pattern recognition system in essence
involves four main components which are shown in Fig. 1.

Figura 1: Main Stages of Pattern Recognition.

The first step in images recognition patterns is the
acquisition of the image. In this step a sensor can be used
for scanning. This sensor can be a scanner, a photograph
camera, a tomograph, etc. The nature of the sensor, as also

the image obtained is determined by the specific application.
In this work, it is used a high-resolution tomograph in order
to generate X-ray computed microtomography (µCT) scan-
ning images, to obtain images from geological plugs. The
procedure also allows obtaining magnified images of rocks
and soils, where it is possible to study some petrophysical
properties of the systems, like porosity, permeability, among
others [1–3, 6, 7].

In the preprocessing step the data are modified by
using several methods in order to improve the quality of
the image. Usually, in this stage some imperfections (pre-
sence of noisy pixels, contrast and/or inappropriate bright-
ness) which may arise during the image acquisition are cor-
rected. The segmentation process is also performed aiming
split the image in its principal units, it means, to separate the
principal objects of the image. A robust segmentation proce-
dure can produce excellent solutions regarding the identifica-
tion of particular objects inside the image. On the contrary,
a bad segmentation leads to wrong interpretations of the re-
sults. Gonzales [14] point out that the segmentation process
is a critical point inside the image processing.

Another method that can be useful in this stage is
the Mathematical Morphology. The basic idea of this tech-
nique is the comparison of the content of an image with a
small image which has a known format. This small image
is called structural element and it contains geometric and/or
topological features which are related with the relevant in-
formation of the original image. Meyer [20] states that this
method is an important tool which can be used in different
stages during the image processing, pointing out its impor-
tance during analyses of microscopic images. The principal
operations of the Mathematical Morphology are the erosion
and dilation. Both methods are the base for more complex
transformations. These forementioned operations depend on
the image being processed (i.e. white and black, colors, gray
levels). In this particular work, the erosion operator was used
to process binary images aiming to eliminate specific pixels
which do not correspond to a specific pattern. More infor-
mation about these operators and its particular details can be
found in [14] and [21]. The extraction of image characteris-
tics aims to find some quantitative information in the image
which was previously processed by using the image descrip-
tors technique. These descriptors are used in order to des-
cribe different properties such as color, texture and shape of
its objects. These properties should be represented as a sui-
table data structure typical of the data recognition algorithm,
i.e. the properties representation must be a numeric vector
called features vector. It is also important to point out that
these properties should contain useful and enough informa-
tion in order to separate particular objects of the figure, since
these features have a critical impact on the results of the next
step (decision making). On the other hand, one crucial pro-
blem in defining the features vector is that it should be in-
variant under geometric transformations like rotation, scale
and translation. Thus, a robust images pattern recognition
system should be enough flexible as to recognize the same
pattern transformed under different operations. Details about
some particular methods for extracting invariant features will
be detailed in section 2.2 of this work. Emphasis would be
given to the shape descriptors, in particular, the so-called Hu
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Moments.
The decision making step in a pattern recognition

process is the recognizing of the object (also can be the shape
of the object), or in a more general procedure, specifically,
the recognition of some specific fingerprints of the object.
According to Jain [17] the four best known approaches for
pattern recognition are: pattern matching; statistical classifi-
cation; syntactic or structural matching and neural networks.
The authors claim also that these models are not independent
and sometimes the same pattern recognition method can have
different interpretations. In this work it is discussed the pat-
tern matching approach aiming to find the similarity between
a reference image and the test image through the patterns of
invariant features obtained in both images.

2.2. Shape Descriptor

The objects are represented by its features (e.g. co-
lor, shape and texture), and many methods are used to com-
pute them. Fig. 2 show some shape descriptors, and a de-
tailed review can be found in [22]. The shape descriptors
are classified into two categories: contour-based and region-
based. Among of them, some are invariant to rotation and
translation, as well as changes in scale, allowing that same
objects with different images sizes should be recognized as
identical.

Figura 2: Stages of features extraction and shape description
techniques, Adapted from [22].

The Region-Based Shape Descriptors can describe
complex objects that consist of multiple disconnected regi-
ons, as well as, simple objects with or without holes. Bober
[23] points out that the objective of a descriptor are: provide
a compact and efficient way to describe properties of multi-
ple disjoint regions, retrieving objects that somehow may be
divided into disconnected sub-regions during the segmenta-
tion process and robustness to noise. The techniques based
on Moments are main representatives of this type of descrip-
tor [24]. There are various techniques mentioned in the lite-
rature based on the Moments e.g. Hu Moments [12], Affine
Moment Invariant [25], Zernick Moment [13], etc. In this

work, we used Hu Moments, which are Region-Based Shape
Descriptor, in order to characterize objects in geological mi-
crotomography images.

2.3. Hu Moments

In Image Processing, is usual to define moments
weightened by the pixel intensity. We expect that moments
may characterize the shape of interest and in particular cases
that it would be possible to give a resonable interpretation
for them. The moment of order (p+q) for 2D objects can be
defined as

mpq =
∫

dxdyxpyq f (x,y) , (1)

where f (x,y) is a weight function, we use in this work as
weight function the pixel intensity unless otherwise noted. If
one takes f (x,y) = 1 inside the shape and f (x,y) = 0 outside
the moment M00 represents the shape area. The centroid is
also simply derived

x̄ =
M10

M00
, (2a)

ȳ =
M01

M00
. (2b)

From Eq. (1) and (2) it is also possible to define central
moments

µpq =

∞∫
−∞

∞∫
−∞

(x− x̄)p(y− ȳ)q f (x,y)dxdy . (3)

In 1962 Hu [12] introduced a set of o translation,
rotation, and scaling (TRS) invariant moments developed in
the context of algebraic invariants theory[26–28]. In this fo-
rementioned paper were presented a set of 7 moments. The
translation invariant moment is defined as

ηi j =
µi j

µ

(
1+ i+ j

2

)
00

, (4)

and the set of 7 TRS moments are defined as follows

I1 = η20 +η02 , (5a)

I2 = (η20 −η02)
2 +4η

2
11 , (5b)

I3 = (η30 −3η12)
2 +(3η21 −η03)

2 , (5c)

I4 = (η30 +η12)
2 +(η21 +η03)

2 , (5d)

I5 = (η30 −3η12)(η30 +η12)[(η30 +η12)
2 −3(η21 +η03)

2]+

(3η21 −η03)(η21 +η03)[3(η30 +η12)
2 − (η21 +η03)

2] ,
(5e)
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I6 = (η20 −η02)[(η30 +η12)
2 − (η21 +η03)

2]+

4η11(η30 +η12)(η21 +η03) , (5f)

I7 = (3η21 −η03)(η30 +η12)[(η30 +η12)
2 −3(η21 +η03)

2]−
(η30 −3η12)(η21 +η03)[3(η30 +η12)

2 − (η21 +η03)
2] .

(5g)

Note that the first moment is analogous of the z
component of the moment of inertia. Numerous works have
been devoted to applications of the Hu invariant moments.
For example, Flusser and Suk [29] applied moment invari-
ants in template matching and registration of satellite images
and Mukundan [30] employed them to estimate the position
and the attitude of the object in 3-D space. Wong [31] deve-
loped illumination invariants suitable for texture classifica-
tion.

In the last decade the presented set of 7 classical
invariants was proved not independent nor complete [32, 33].
The third moment can be written in terms of other 6. It is also
possible to define a third order moment

I8 = η11[(η30 +η12)
2 − (η03 +η21)

2]−
(η20 −η02)(η30 +η12)(η03 +η21) , (6)

Although those recent developments improve the
comprehension on the TRS Hu moments does not diminish
the importance nor limit the power of the moments as tools
to characterize shapes. In this work we shall concentrate in
the 7 classical set.

3. IMAGE MATCHING WITH HU MOMENTS

There are several applications of pattern recognition
with Hu invariant moments [34–37]. Since the Hu moments
are invariant under translation rotation and scale it turns out it
would be a suitable set of features to characterize shapes and
match those shapes in two different images. However, these
properties are valid in a continuous function. As the ima-
ges are discrete one must expect and take in consideration
some variation after scaling an image. To porsue on the pat-
tern recognition one must also determine if the moments are
reasonably dinstinguishable in parameters space whithin the
required precision. In this work we concentrate in a specific
type of image, µCT scanning images from geological plugs.
Those images are taken in slices. The same plug usually is
scanned in a low resolution and frequently smaller plugs are
produced from the bigger plug. The smaller plugs are usu-
ally scanned in higher resolution and sometimes the plug is
destroyed to produce samples to be imaged by an scanning
electron microscope (SEM). In order to make a more con-
sistent analysis it would be interesting to find which part of
the plug is zoomed or imaged by other methods and match
those images. For simplicity in our tests we used an uint16
1000×1000 pixels µCT image and processed that image by
lowering its scale and adding noise in order to compare with
the original image. The test images are matched with the
original image by comparing the table of invariant moments
extracted in the grains of the test and original sample. In the
next section we describe the algorithm used carefully.

3.1. Algorithm

The algorithm used can be seen in the Fig. 3. The
original image and the test image are filtered by a Median fil-
ter. After that the images are binarized. The Original image
used in all tests is shown in Fig. 4, where it can be distin-
guish 3 phases: a grain phase, a pore phase and not resolved
phase, by visually examining the image is clear that the most
defined phase is the pore phase which we are used as sour-
ces for shapes to match. In order to determine those shapes
we used a simple Binarization and labeled considering a 8
connectivity. In Fig. 4 we present the a label image with
the 164 objects detected. In the next step the TRS invariant
Hu moments are calculated for each shape extracted in the
labelization process for both images and two tables are gene-
rated, the first containing Hu from the shapes in the original
image and the second with the Hu in the test image. Next,
the algorithm compares those two tables defining a moment
match if

IO
n −5%IO

n ≤ IT
n ≤ IO

n +5%IO
n , (7)

where IO
n and IT

n are the n-th Hu moment for the original and
test image respectively. In our matching algorithm for each
object we search for a match and for false positives separa-
tely, this means that the false detection number and the ob-
jects recovered number are independent. In the next section
we discuss a resonable criteria to determine if we recovered
the shape or not.

Input High Resolution 
Micro-CT 

Image 

Median 
Filter Image Segmentation 

The Image Processing Chain 

Feature Extraction 
(HU Moments Calculation) 

HU Moments Matching High 
and Low resolution 

Image Labelization 

Input Low Resolution 
Micro-CT 

Image 

Figura 3: Algorithm Workflow. The Original and test images are
inputed pre-processed and binarized, after a labelization process

the feature extraction phase calculates the Hu moments in the
remaining objects. The table with the Hu moments from the
objects in test image are compared to the objects in original

images.

3.2. Low Resolution Binary Images

In this first approach we used as test images the high
resolution (original) binarized and then resized using the im-
resize function from Matlab Image Processing Toolbox. The
main idea of this test is to evaluate the potential of the Hu
moments to find the shapes extracted avoiding the segmenta-
tion problem. The test images have 1/2, 1/4, 1/6, 1/8 of the
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Figura 4: The limestone from Lagoa Salgada outcrop in Rio de Janeiro original µCT image used as input (left) and the label Image with the
extracted shapes (right).

original resolution. If ones defines as a sufficient condition to
find an object a single Hu match each Hu defines a sample of
recovered objects and false positives. By using an 1/2 binary
image with this criteria results in a sample where the fake de-
tections were 163 from 164 shapes, that is all the objects in
the image are taken as false positives and the algorithm is not
able to distinguish any object. As the Hu moments are scale
invariant the main concern is with the number of false detec-
tions. It is worth mentioning that our main goal is to match
images µCT images, so the completeness of objects recove-
red is less relevant than the fake detections. Thereafter we
define a combination of invariant moments as a criteria to
match according to the Table 5.

Figura 5: Hu moments combinations used as criteria to match
objects.

The results for each combination is presented in Fig.
6 for all tested resolutions

The most pure sample is the one with configuration
F. The configuration D presents the a balanced results be-
etween false detections and matches. In Fig. 7 we present a
sample of recovered objects for the D configuration.

Even with 1/8 resolution the algorithm is still ca-
pable to detect 2 shapes. For 1/10 resolution the algorithm
could not find any object in any configuration. In the next
section we consider the effect of the binarization.

3.3. Different Resolution Images

To take in consideration the effect of the segmenta-
tion process we used as test image the original image which
we first resize and after this process binarize the image. In
this case the algorithm found objects only in the 1/2 resolu-
tion image, the results is presented in Fig.8 and the objects
found with D configuration can be seen in Fig. 9

3.4. Images with Noise Added

In this analysis we introduced some noise concer-
ning some possible sistematic problems that may occur du-
ring the imaging process. We added poisson noise to the full
resolution image and the 1/2 resolution image. In the Fig.
10 we present our results for the full resolution image and
the results for the image with 1/2 resolution. In both cases
the algorithm was able to recover objects in those conditions
as presented in Fig. 11 for the configuration D.

4. CONCLUSION

In this work we present an algorithm to match ob-
jects extracted from a µ-CT image using TRS Hus moments
in diferent resolutions and conditions, although the matching
method used was very simple the algorithm was able to reco-
ver objects in a 1000× 1000 image in 1/8 resolution image
with same binarization. In low resolution images with dif-
ferent binarization case with 1/2 resolution, the algorithm
found more matches than false positives in most of the tested
configurations (C, D, E, F) and capable to find objects even
after noise addtion. However, the number of false positives is
a limitation for this method. The results in this kind of µCT
images from plugs of sedimentary rocks suggest that Hus
moments may be used as a feature to match the extracted
shapes complementary to other features although not alone
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Figura 6: Object Matches for a low resolution Binary image.

Figura 7: Multiresolution detections after the Hu Matching using configuration D in reduced resolution binary images. From left to right
1/2, 1/4 , 1/6 and 1/8 resolutions.

Figura 8: Object Matches for a low resolution image.

using this matching criteria. The choise of a more suitable
mathing condition can also increase the results, for example,
use Hus diferent distance definitions in parameter space or
as input to an unsupervioned Artifical Neural Network. This
algorithms are currently under investigation.
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Figura 9: Detections recovered after the Hu Matching for 1/2
resolution

Figura 10: Object Matches for a poisson noise added images for a full resolution image (left) 1/2 resolution image (right).

Figura 11: Detections recovered after the Hu Matching for full resolution (left) and (right) 1/2 resolution with poisson noise.



CBPF-NT-002/14 19

[1] Jef Caers. Geostatistical reservoir modelling using statistical
pattern recognition. Journal of Petroleum Science and Engi-
neering, 29(3–4):177 – 188, 2001. Soft Computing and Earth
Sciences.

[2] Hiroshi Okabe and Martin J. Blunt. Pore space reconstruction
of vuggy carbonates using microtomography and multiple-
point statistics. Water Resources Research, 43(12):n/a–n/a,
2007.

[3] A. Limaye A. Sakellariou T.J. Senden A.P. Sheppard R.M. Sok
W.V. Pinczewski S. Bakke L.I. Berge R.E. Oren M.A. Knacks-
tedt C.H. Arns, F. Bauget. Pore-scale characterization of
carbonates using X-ray microtomography . Phys. Rev. D ,
82(12):123526, December 2005.

[4] Steffen Schlüter, Ulrich Weller, and Hans-Jörg Vogel. Seg-
mentation of x-ray microtomography images of soil using gra-
dient masks. Computers & Geosciences, 36(10):1246 – 1251,
2010.

[5] B.C. Masschaele, V. Cnudde, M. Dierick, P. Jacobs, L. Van
Hoorebeke, and J. Vlassenbroeck. Ugct: New x-ray radi-
ography and tomography facility. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 580(1):266 –
269, 2007. Proceedings of the 10 th International Symposium
on Radiation Physics {ISRP} 10.

[6] A. Kaestner, E. Lehmann, and M. Stampanoni. Imaging and
image processing in porous media research. Advances in Wa-
ter Resources, 31(9):1174 – 1187, 2008. Quantitative links
between porous media structures and flow behavior across sca-
les.

[7] D. Müter, S. Pedersen, H.O. Sørensen, R. Feidenhans’l, and
S.L.S. Stipp. Improved segmentation of x-ray tomography
data from porous rocks using a dual filtering approach. Com-
puters & Geosciences, 49(0):131 – 139, 2012.

[8] R. Brunelli. Template Matching Techniques in Computer Vi-
sion: Theory and Practice. Wiley, 2009.

[9] Michael S. Lew. Content-based multimedia information retri-
eval: State of the art and challenges. ACM Trans. Multimedia
Comput. Commun. Appl, 2:1–19, 2006.

[10] Lisa Gottesfeld Brown. A survey of image registration techni-
ques. ACM Comput. Surv., 24(4):325–376, December 1992.

[11] Geoffrey J. Hay, Thomas Blaschke, Danielle J. Marceau,
and André Bouchard. A comparison of three image-object
methods for the multiscale analysis of landscape structure.
{ISPRS} Journal of Photogrammetry and Remote Sensing,
57(5–6):327 – 345, 2003. Challenges in Geospatial Analysis
and Visualization.

[12] Ming-Kuei Hu. Visual pattern recognition by moment invari-
ants. Information Theory, IRE Transactions on, 8(2):179–187,
February 1962.

[13] Yaser S. Abu-Mostafa and Demetri Psaltis. Recognitive as-
pects of moment invariants. IEEE Trans. Pattern Anal. Mach.
Intell., 6(6):698–706, November 1984.

[14] R.C. Gonzalez and R.E. Woods. Digital Image Processing.
Pearson/Prentice Hall, 2008.

[15] T. Lindblad and J.M. Kinser. Image Processing Using Pulse-
Coupled Neural Networks. Perspectives in neural computing.
Springer, 2005.

[16] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern classification.
Pattern Classification and Scene Analysis: Pattern Classifica-
tion. Wiley, 2001.

[17] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statisti-

cal pattern recognition: A review. IEEE Trans. Pattern Anal.
Mach. Intell., 22(1):4–37, January 2000.

[18] C.M. Bishop. Neural Networks for Pattern Recognition. Cla-
rendon Press, 1995.

[19] S. Theodoridis and K. Koutroumbas. Pattern Recognition. El-
sevier Science, 2008.

[20] Fernand Meyer. Automatic screening of cytological speci-
mens. Computer Vision, Graphics, and Image Processing,
35(3):356 – 369, 1986. Special Section on Mathematical
Morphology.

[21] O.M. Filho and H.V. Neto. Processamento digital de imagens.
Série Acadêmica. BRASPORT, 1999.

[22] Dengsheng Zhang and Guojun Lu. Review of shape repre-
sentation and description techniques. Pattern Recognition,
37(1):1 – 19, 2004.

[23] M. Bober. Mpeg-7 visual shape descriptors. Circuits and Sys-
tems for Video Technology, IEEE Transactions on, 11(6):716–
719, Jun 2001.

[24] C.-H. Teh and R.T. Chin. On image analysis by the methods
of moments. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 10(4):496–513, Jul 1988.

[25] Jan Flusser and Tomás Suk. Pattern recognition by affine mo-
ment invariants. Pattern Recognition, 26(1):167 – 174, 1993.

[26] D. Hilbert and B. Sturmfels. Theory of Algebraic Invari-
ants. Cambridge Mathematical Library. Cambridge University
Press, 1993.

[27] G.B. Gurevich. Foundations of the Theory of Algebraic Inva-
riants. P. Noordhoff N. V, 1964.

[28] I. Schur and H. Grunsky. Vorlesungen über Invariantentheo-
rie. Grundlehren der mathematischen Wissenschaften. Sprin-
ger, 1968.

[29] J. Flusser and T. Suk. A moment-based approach to registra-
tion of images with affine geometric distortion. Geoscience
and Remote Sensing, IEEE Transactions on, 32(2):382–387,
Mar 1994.

[30] R. Mukundan and K.R. Ramakrishnan. An iterative solution
for object pose parameters using image moments. Pattern Re-
cognition Letters, 17(12):1279 – 1284, 1996.

[31] Robert Y. Wong and Ernest L. Hall. Scene matching with in-
variant moments. Computer Graphics and Image Processing,
8(1):16 – 24, 1978.

[32] Jan Flusser. On the independence of rotation moment invari-
ants. Pattern Recognition, 33(9):1405 – 1410, 2000.

[33] J. Flusser and T. Suk. Rotation moment invariants for recogni-
tion of symmetric objects. Image Processing, IEEE Transac-
tions on, 15(12):3784–3790, Dec 2006.

[34] S.O. Belkasim, M. Shridhar, and M. Ahmadi. Pattern recog-
nition with moment invariants: A comparative study and new
results. Pattern Recognition, 24(12):1117 – 1138, 1991.

[35] J. Flusser, T. Suk, and Stanislav Saic. Recognition of blurred
images by the method of moments. Image Processing, IEEE
Transactions on, 5(3):533–538, Mar 1996.

[36] F. El-Khaly and M.A. Sid-Ahmed. Machine recognition of
optically captured machine printed arabic text. Pattern Recog-
nition, 23(11):1207 – 1214, 1990.

[37] K. Tsirikolias and B.G. Mertzios. Statistical pattern recogni-
tion using efficient two-dimensional moments with applicati-
ons to character recognition. Pattern Recognition, 26(6):877
– 882, 1993.


