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Abstract

The problem of accounting for the degrees of freedom in passing from mas-
sive spin to massless helicity degrees of freedom and its inverse, the “fattening”
of massless tensor fields to their massive s = |h| counterparts, are solved using
“string-localized fields”.

This approach allows to overcome the Weinberg-Witten impediment against the
existence of massless |h| ≥ 2 energy-momentum tensors, and to replace the van
Dam-Veltman-Zakharov discontinuity concerning, e.g., very light gravitons, by a
continuous limit m→ 0.

1 Introduction

In relativistic quantum field theory, the quantization of interacting massless or massive
classical potentials of higher spin (s ≥ 1) either violates Hilbert space positivity which is
an indispensable attribute of the probability interpretation of quantum theory, or leads to
a violation of the power counting bound of renormalizability whose maintenance requires
again a violation of positivity.
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In order to save the positivity for those quantum fields which correspond to classically
gauge invariant observables one has to formally extend the theory by adding degrees
of freedom in the form of negative metric Stückelberg fields and “ghosts” without a
counterpart in classical gauge theories. The justification for this quantum gauge setting
is that one can extract from the indefinite metric Krein space a Hilbert space which the
gauge invariant operators generate from the vacuum.

This situation is satisfactory as far as the perturbative construction of a unitary gauge-
invariant S-matrix is concerned. However the theory remains incomplete in that it pro-
vides no physical interpolating fields which mediate between the causal localization prin-
ciples of the field theory and the analytic structure of the S-matrix. Expressed differently,
gauge theory allows to compute the perturbative S-matrix, but cannot construct its off-
shell extension on a Hilbert space.

There are two famous results about the higher-spin massless case. The first is the
Weinberg-Witten theorem [21] which states that for s ≥ 2, no point-localized stress-energy
tensor exists such that the Poincaré generators are moments of its zero-components. This
result also obstructs the semiclassical coupling of massless higher spin matter to gravity.

The second is the DVZ observation due to van Dam and Veltman [22] and to Zakharov
[24], that in interacting models with s ≥ 2, scattering amplitudes are discontinuous in the
mass at m = 0, i.e., the scattering on massless gravitons (say) is significantly different
from the scattering on gravitons of a very small mass.

Both problems, and the positivity problem of gauge theories, can be solved with the
help of “string-localized quantum fields” defined in the physical Hilbert space. These are
potentials defined as integrals over their field strengths (and derivatives thereof) with the
same particle content. String-localized massive potentials of spin s having an improved
UV dimension dUV = 1 rather than dUV = s + 1, admit renormalizable interactions that
are otherwise excluded by power-counting.

A point-localized massive spin s potential can be split up into a string-localized potential
that has a massless limit, and derivatives of one or more so-called “escort fields”. The role
of the latter is to separate off derivative terms from the interaction Lagrangean or from
conserved currents, that do not contribute to the S-matrix or to charges and Poincaré
generators, respectively. They thus “carry away” all non-renormalizable UV fluctuations
and singularities as m→ 0.

How this works, may be illustrated in the case of QED [18, 19, 10]: The coupling to
the indefinite Maxwell potential AK (“K” stands for “Krein”) is replaced by a coupling
jµAP

µ to the massive Proca potential AP. This avoids negative-norm states, but the
interaction is non-renormalizable because of the UV dimension 2 of the Proca potential.
Now, the decomposition (see Sect. 2) AP

µ(x) = Aµ(x, e) − m−1 ∂µa(x, e) into a string-
localized potential and its escort comes to bear: Aµ(e) has UV dimension 1 and is regular
at m = 0. The UV-divergent part of the interaction is carried away by the escort field:
−m−1 jµ∂µa(e) = −∂µ(m−1 jµa(e)) is a total derivative and may be discarded from the
interaction Lagrangean. The remaining string-localized (but equivalent to the point-
localized) interaction jµAµ(e) has UV dimension 4, and can be taken at m = 0.

The ongoing analysis of perturbation theory with string-localized interactions [7, 10, 14]
gives strong evidence that the resulting theory is order-by-order renormalizable, and equiv-
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alent to the “usual” QED. The scattering matrix can be made independent of the string
direction e, provided a suitable renormalization condition is satisfied. This condition can
be seen as an analogue of Ward identities stipulating BRST invariance in point-localized
but indefinite approaches [17, 4]. Indeed, the condition can also be formulated in a
cohomological manner. Yet, the precise relation between gauge invariance and string-
independence remains to be explored.

Whereas string-localized perturbation theory is still in its infancy, the problems of mass-
less currents and energy-momentum tensors as well as the continuous passage from free
massive fields to their massless helicity counterparts can be completely solved. The pre-
sentation of this solution is the principal aim of this letter, including also the opposite
direction, sometimes (in connection with the Higgs mechanism) referred to as “fattening”.

1.1 Overview of results

We outline the general picture for arbitrary integer spin s, referring to [12] for further
details. As the case s = 2 exhibits all the features of the general case, we focus ourselves
to s = 1 and s = 2 in Sect. 2, Sect. 3.

The 2-point functions of covariant massless potentials are indefinite polynomials in the
metric tensor ηµν , while their field strengths (curl in all indices) are positive. (By “posi-
tive”, it is understood ”positive-semidefinite”, accounting for null states due to equations
of motion like ∂µFµν = 0.) The field strengths can also be constructed, without refer-
ence to a potential, directly on the Fock space over the unitary massless helicity h = ±1
Wigner representation of the Poincaré group. This is exposed in standard textbooks,
e.g., [20]. One can construct potentials in the Coulomb gauge on the same Hilbert space,
but one gets into conflict with Poincaré covariance: Lorentz transformations result in an
operator-valued gauge transformation due to the affine nature of the Wigner phase. When
the potentials are required for interactions, and one has to compromise between positivity
or Lorentz invariance, preference is usually given to covariance.

For some early treatments of massive free tensor fields of higher spin, see [3, 6]. We freely
adopt the name “Proca” for all spins s ≥ 1. The Proca potentials are symmetric traceless
and conserved tensors AP

µ1...µs
(x) of rank s. Their 2-point functions obtained from the

(m, s) Wigner representation [20] are polynomials in the positive projection orthogonal
to the momentum (sign convention η00 = +1)

−πµν(p) = −ηµν +
pµpν
m2

with coefficients dictated by symmetry and tracelessness. The momenta in the numerator
cause the UV dimension dUV = s+ 1 and, by power counting, jeopardize the renormaliz-
ability of minimal couplings to currents.

The potentials admit no massless limit. Only their field strengths F[µ1ν1]...[µsνs] exist at
m = 0 because the curls kill the terms with momentum factors.

We define symmetric tensor fields A
(r)
µ1...µr of rank 0 ≤ r ≤ s on the Fock space of the

massive field strengths such that

• All A(r) have UV dimension dUV = 1 and are regular in the massless limit.
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• The potential AP can be decomposed in a way that (i) all contributions of UV dimension
> 1 are isolated as derivatives of the escort fields A(r) of lower rank r < s, and (ii) the
singular behaviour at m → 0 is manifest in the expansion coefficients (inverse powers of
m).

• The massive fields A(r) are coupled among each other through their traces and di-
vergences. In the massles limit, they become traceless and conserved, and their field
equations and 2-point functions decouple.

• At m = 0, the escort A(0) is the canonical massless scalar ϕ. The tensors A(r>0) are
potentials for the field strengths of helicity h = ±r [20]. They were previously constructed
[16] without an approximation from m > 0.

• Conversely, the given massless potential A(s) of any helicity h = ±s can be made
massive (“fattening”) by simply changing the dispersion relation p0 = ωm(~p). The fattened
field brings along with it all lower rank fields A(r) by virtue of the coupling through the
divergence. We give a surprisingly simple formula involving only derivatives, to restore
the exact Proca potential AP.

• We construct a stress-energy tensor for the massless fields that decouples into a direct
sum of mutually commuting stress-energy tensors T (r) for the helicity potentials A(r).

The massless limit describes the exact splitting of the (m, s) Wigner representation into
massless helicity representations with h = ±r (r = 1, . . . , s) and h = 0.

In particular, the number 2s + 1 of one-particle states at fixed momentum is preserved.
In contrast, the “fattening” of the massless helicity s field increases the number of one-
particle states, because its 2-point function is a semi-definite quadratic form of rank 2
that becomes rank 2s+ 1 under the deformation of the dispersion relation.

These facts yield an obvious explanation of the DVZ discontinuity [22, 24]: The spin 2
Proca potential AP (or its analog in the indefinite Feynman gauge) is not continuously
connected with a massless helicity h = ±2 potential. At each positive mass, the former
has contributions from all r ≤ 2. Rejecting at m = 0 the helicities |h| < 2 causes the
discontinuity. A coupling through A(2) at every mass would instead smoothly decrease
the contributions of the lower helicities.

The stated properties of the massless potentials and stress-energy tensors are clearly at
variance with many No-Go theorems, including the Weinberg-Witten theorem. This is
possible because they are string-localized. Their 2-point functions involve, instead of the
singular (as m→ 0) tensor πµν(p) or indefinite tensor ηµν , a suitable tensor Eµν(p) whose
substitution into the 2-point functions (i) preserves positivity, (ii) does not affect the field
strengths, and (iii) has a regular limit m→ 0.

The No-Go theorems may be accounted to the fact that such a tensor Eµν(p) does not
exist, if it is allowed to be a function of the momentum only. Instead,

E(e, e′)µν(p) := ηµν −
pµeν
(pe)+

−
e′µpν

(pe′)+

+
(ee′)pµpν

(pe)+(pe′)+

(where i/(k)+ = i/(k + i0) is the Fourier transform of the Heaviside function) are distri-
butions in p and two four-vectors e, e′. If Eµν is substituted for πµν or ηµν , the potentials
depend on e, but the field strengths will not.
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In momentum space, the integration

X(x, e) ≡ (IeX)(x) :=

∫
R+

dλX(x+ λe) (1.1)

produces the denominators i((pe) + i0)−1 in the creation part and −i((pe) − i0)−1 in
the annihilation part. Thus, fields whose 2-point functions are polynomials in Eµν are
necessarily string-localized.

String-localization requires some comments. First, it is not a feature of the associated
particles, but of the fields used to couple them to other particles. (The only exception
are particles in the infinite-spin representations [15, 8], that are beyond the scope of this
letter.)

Eq. (1.1) (and its generalizations involving several integral operations Ie) imply the
Poincaré transformations of string-localized fields

Ua,ΛAµ1...µr(x, e)U
∗
a,Λ =

(∏
i
Λνi

µi

)
Aν1...νr(a+ Λx,Λe),

i.e., the direction of the string is transformed along with its apex x and the tensor com-
ponents of the field tensor.

There is no conflict with the principle of causality, which is as imperative in relativistic
quantum field theory as Hilbert space positivity. String-localized fields satisfy causal
commutation relations according to their localization: two fields commute whenever their
strings are pointwise spacelike separated. There are sufficiently many spacelike separated
pairs of spacelike or lightlike strings to construct scattering states by asymptotic cluster
properties (Haag-Ruelle theory).

String-localized interactions admit couplings of physically massive tensor potentials with-
out spontaneous symmetry breaking. Instead, when coupling self-interacting massive
vector bosons (like W and Z bosons) via their string-localized potentials, the string-
independence can only be achieved with the help of a boson with properties like the
Higgs, including a quartic self-interaction [19]. Its role is not the generation of the mass,
but the preservation of the renormalizability and locality.

Examples of new renormalizable interactions in the string-localized setting could be the
coupling of matter to (massive) gravitons through the string-localized potentials A(2), and
perhaps the self-coupling of gravitons.

In the sequel, we give more details for spin 1 and 2. All displayed linear relations between
fields follow from their definitions by integrals and derivatives of point-localized fields,
e.g., by inspection of their integral representations in terms of creation and annihilation
operators.

We write 2-point functions throughout as

(Ω, X(x)Y (y)Ω) =

∫
dµm(p) · e−ip(x−y) · mMX,Y (p),

where dµm(p) = d4p
(2π)3

δ(p2 −m2)θ(p0).
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2 Spin one

The 2-point function of the massless Krein potential

0M
AK
µ ,A

K
ν = −ηµν

is indefinite. Its curl Fµν = ∂µAν−∂νAµ is the Maxwell field with positive 2-point function

0M
Fµν ,Fκλ = −pµpκ ηνλ + pµpλ ηνκ + pνpκ ηµλ − pνpλ ηµκ.

The massive Proca potential satisfies ∂µAP
µ = 0. Its positive 2-point function is

mM
AP
µ ,A

P
ν = −πµν(p). (2.1)

The curl kills the term pµpν/m
2, so the field strength is regular at m = 0. The field

equation ∂µFµν = −m2AP
ν gives back the potential in terms of its field strength.

Only for s = 1, the massless limit can be achieved with point-localized fields, by inspection
of their 2-point functions: mAP

µ is regular at m = 0, where it decouples from Fµν and
becomes the derivative of the scalar free field ϕ with 0M

∂µϕ,∂νϕ = pµpν .

In the string-localized setting, the massless scalar emerges without derivative. We define

Aµ(x, e) := Ie
(
Fµν
)
(x)eν ≡

∫
R+

dλFµν(x+ λe)eν ,

a(x, e) := −m−1 ∂µAµ(x, e). (2.2)

Aµ(e) is regular in the massless limit because Fµν is. That a(e) is also regular can be seen
from

mM
Aµ(−e),Aν(e′) = −E(e, e′)µν(p), (2.3)

which implies by the definition of a(e)

mM
a(−e),Aν(e′) = O(m), mM

a(−e),a(e′) = 1 +O(m2)

(As the fields are distributions also in e [11], we have to admit independent string direc-
tions e, e′. The choice “−e” is a convenience paying off for higher spin [12].)

At m = 0, the fields a and Aµ decouple, and converge to the massless scalar and (as
the terms O(p/(pe)) in Eq. (2.3) do not contribute to Fµν) to a string-localized massless
potential for the Maxwell field strength.

In addition, one gets the decomposition underlying the QED example in Sect. 1

AP
µ(x) = Aµ(x, e)−m−1 ∂µa(x, e). (2.4)

The taming of the UV behaviour is seen from Eq. (2.3): the momentum factors in the
denominators of E(e, e′) balance those in the numerators [11].

One can average the potential Aµ in e over the spacelike sphere with e0 = 0. The resulting
field is, at m = 0, the Maxwell potential in the highly nonlocal [20] Coulomb gauge.
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3 Spin two

The case s = 2 is largely analogous, but the decoupling at m = 0 requires a second step.

The positive 2-point function of the massless field strength F[µκ][νλ] can be represented as
the curl of the indefinite 2-point function of the Krein potential

0M
AK
µν ,A

K
κλ =

1

2

[
ηµκηνλ + ηµνηκλ

]
− 1

2
ηµνηκλ. (3.1)

The coefficient −1
2

of the last term ensures that there are precisely two helicity states.
The symmetric, traceless and conserved massive Proca 2-point function is

mM
AP
µν ,A

P
κλ =

1

2

[
πµκπνλ + πµλπκν

]
− 1

3
πµνπκλ. (3.2)

The coefficient −1
3

of the last term ensures the vanishing of the trace. The formulae for
the massive and massless field strengths differ only by this coefficient. In particular, the
massless field strength is not the limit of the massive field strength as m→ 0.

In the string-localized setting, we define the potential

Aµν(x, e) :=
(
I2
eF[µκ][νλ]

)
(x)eκeλ (3.3)

and its escort fields

a(1)
µ (x, e) := −m−1 ∂νAµν(x, e),

a(0)(x, e) := −m−1 ∂µa(1)
µ (x, e). (3.4)

Eq. (3.2) implies

mM
Aµν(−e),Aκλ(e′) =

1

2

[
E(e, e′)µκE(e, e′)νλ + (κ↔ λ)

]
− 1

3
E(e, e)µνE(e′, e′)κλ, (3.5)

and one obtains the escort correlations with Eq. (3.4). The correlations between even and
odd rank fields are O(m) and decouple in the massless limit. The odd-odd and even-even
correlations become

0M
a
(1)
µ (−e),a(1)ν (e′) = −1

2
E(e, e′)µν(p),

0M
Aµν(−e),a(0)(e′) = −1

3
E(e, e)µν(p), (3.6)

0M
a(0)(−e),a(0)(e′) =

2

3
.

Aµν(e) and a(e) do not decouple at m = 0, in fact one has ηµνAµν(e) = −a(e). In order
to decouple the fields, notice that the operator

Eµν(e, e) = ηµν + (eν∂µ + eµ∂ν)Ie + e2∂µ∂νI
2
e

acts in momentum space on the creation and annihilation parts by multiplication with
E(e, e)µν(p) and with E(e, e)µν(−p) = E(−e,−e)µν(p), respectively. Thus,

A(2)
µν (e) := Aµν(e) +

1

2
Eµν(e, e) a

(0)(e) (3.7)
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decouples from a(0), and its 2-point function is the same as Eq. (3.5) but with the proper
coefficient −1

2
rather than −1

3
for the last term. Thus, A(2) is a string-localized poten-

tial for the massless field strength. It is, unlike other potentials, positive, traceless and
conserved.

Now, the DVZ discontinuity can be replaced by a smooth limit of the massive potential
A(2) to the massless A(2). The apparent “jump” of the coefficient from −1

3
(massive) to

−1
2

(massless) (cf. also [22, Eq. (28)]) is by itself not a discontinuity, but a consequence
of the choice of the fields before the limit is taken.

In the massless limit, A(0)(e) =
√

3/2 a(0)(e) becomes the e-independent massless scalar

field by Eq. (3.6). A
(1)
µ :=

√
2 a

(1)
µ is the same string-localized Maxwell potential as

obtained from s = 1.

The generalization of Eq. (2.4) quantifies the singular lower helicity contributions to AP:

AP
µν(x) = A(2)

µν (x, e)−
√

1/6Eµν(e, e)A
(0)(x, e)−

−
√

1/2

m

(
∂µA

(1)
ν + ∂νA

(1)
µ

)
(x, e) +

√
2/3

m2
∂µ∂νA

(0)(x, e).

Also the massless potential A
(2)
µν (e) can be averaged over the string directions with e0 = 0,

and yields the Coulomb gauge potential AC
0µ(x) = 0.

The case of general integer spin [12] is very similar to s = 2, except for the more involved
combinatorics.

4 String-localized stress-energy tensor

The stress-energy tensor is by no means unique. It must be conserved and symmetric so
that the generators

Pσ =

∫
x0=t

d3xT0σ, Mστ =

∫
x0=t

d3x (xσT0τ − xτT0σ)

are independent of the time t; and the commutators with the generators must implement
the infinitesimal Poincaré transformations given by the Wigner representation. (The
commutators are fixed by the 2-point functions.) But one may add “irrelevant” local
terms as long as they do not change the generators.

The correct generators are obtained from the “reduced stress-energy tensor” (× = µ2 . . . µr
is a multi-index)

T red
ρσ := (−1)s

[
− 1

4
:AP

µ×

↔
∂ρ
↔
∂σ A

Pµ×:− s

2
∂µ
(

:AP
ρ×

↔
∂σ A

P
µ
×: + (ρ↔ σ)

)]
. (4.1)

It differs by “irrelevant terms” from the Hilbert tensor, defined as the variation of a
suitable generally covariant action w.r.t. the metric. The first term in Eq. (4.1) also
appears in Fierz [3]. The second term does not contribute to the momenta, but is needed
to ensure the correct Lorentz transformations [12].
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Expanding AP into A(r)(e) resp. A(r)(e′), and discarding irrelevant terms (involving escort
fields) that “carry away” all singularities when m→ 0, one gets a string-localized stress-
energy tensor that admits a massless limit. Discarding more terms that are irrelevant at
m = 0, one decouples it as the sum over r ≤ s of

T (r)
ρσ (e, e′) = (−1)r

[
− 1

4
:A

(r)
µ×(e)

↔
∂ρ
↔
∂σ A

(r)µ×(e′):− r

4
∂µ
(

:A
(r)
ρ×(e)

↔
∂σ A

(r)
µ
×(e′):

+(e↔ e′)
+(ρ↔ σ)

)]
(4.2)

understood as distributions in two independent directions e, e′. As in Eq. (3.3),

A(r)
µ1...µr

(x, e) = (IreF
(r)
[µ1ν1]...[µrνr]

)(x) eν1 . . . eνr

can be expressed in terms of the massless field strengths.

As the massless potentials A(r) mutually commute, the generators defined by T (r) imple-
ment the Poincaré transformations of A(r). Massless higher spin currents are constructed
similarly. For details see [12].

That the Weinberg-Witten theorem can be evaded with non-local densities, was pointed
out earlier in [9], where examples with unpaired helicities were given. Eq. (4.2) involving
string integrals over field strengths is perhaps the most conservative alternative, also in
comparision with other proposals to couple higher spin matter to gravity [5, 23, 1].

5 “Fattening”

The 2-point functions of the massless and massive string-localized potentials A(s) (for
any spin) are the same polynomial in the tensor Eµν(p), except that the argument p of
the functions Eµν is taken on the respective mass-shell. One obtains the massive field
A(s) from the massless field just by changing the dispersion relation p0 = ωm(~p). As the
massive 2-point function was constructed on the Hilbert space of the Proca potential,
this deformation preserves positivity. Through the coupling to the lower escort fields, it
brings back all spin components of the Proca field. Indeed, the latter is restored from the
massive potential A(s) by

AP
µ1...µs

(x) = (−1)smM
AP
µ1...µs

,APν1...νs
A(s)
ν1...νs

∣∣
m

(x, e),

where mM
AP,AP

is understood as a differential operator (πµν = ηµν +m−2∂µ∂ν).

6 Conclusion

We have identified string-localized potentials for massive particles of integer spin s on the
Hilbert space of their field strengths, that admit a smooth massless limit to decoupled
potentials with helicities h = ±r, r ≤ s. We have presented an inverse “fattening”
prescription via a manifestly positive deformation of the 2-point function. The approach
provides a way around the Weinberg-Witten theorem, and sheds new light on the DVZ
discontinuity.
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Our results also allow to approximate string-localized fields in the massless infinite-spin
Wigner representations [15] by the massive scalar escort fields A(0) of spin s→∞, m2s(s+
1) = κ2 = const. (Work in progress [13].)

String-localized fields are a device to formulate quantum interactions in terms of a given
particle content. Their renormalized perturbation theory is presently investigated [7,
14, 10]. It bears formal analogies with BRST renormalization, but is more economic
(avoiding unphysical degrees of freedom), and much closer to the fundamental principles
of relativistic quantum field theory.

It was shown in the framework of algebraic quantum field theory, that to connect scattering
states with the vacuum, may in certain theories require operations localized in narrow
spacelike cones; and in the presence of a mass gap it cannot be worse than that [2]. The
emerging perturbation theory using string-localized fields is the practical realization of
this insight.

Acknowledgments: JM and KHR were partially supported by CNPq. KHR and BS
enjoyed the hospitality of the UF de Juiz de Fora. We thank D. Buchholz for pointing
out ref. [9].

References

[1] X. Bekaert, N. Boulanger, P. Sundell: How higher-spin gravity surpasses the spin two
barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987–1009.

[2] D. Buchholz, K. Fredenhagen: Locality and the structure of particle states, Commun. Math.
Phys. 84 (1982) 1–54.
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