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Abstract

We present the deformed (for the presence of Calogero potential terms) one-
dimensional quantum oscillator with the exceptional Lie superalgebra F (4) as
spectrum-generating superconformal algebra. The Hilbert space is given by a 16-ple
of square-integrable functions. The energy levels are 2

3 +n, with n = 0, 1, 2, . . .. The
ground state is 7 times degenerate. The excited states are 8 times degenerate. The
(7, 8, 8, 8, . . .) semi-infinite tower of states is recovered from the (7; 8; 1) supermulti-
plet of the N = 8 worldline supersymmetry. The model is unique, up to similarity
transformations, and admits an octonionic-covariant formulation which manifests
itself as “quasi-nonassociativity”. This means, in particular, that the Calogero cou-
pling constants are expressed in terms of the octonionic structure constants.

The associated F (4) superconformal quantum mechanics is also presented.
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1 Introduction

We present the unique (up to similarity transformations) one-dimensional superconformal
quantum mechanical system with the F (4) Lie superalgebra as dynamical symmetry; its
associated (via the de Alfaro-Fubini-Furlan construction [1]) deformed (due to the presence
of Calogero’s [2] potential terms) quantum oscillator, is also derived. The Hilbert space
of the latter model and its discrete, bounded from below, spectrum is obtained.

The division algebra of the octonions are at the core of several exceptional structures
in mathematics. The 5 exceptional Lie algebras are all related to the octonions. Indeed
g2 is the Lie algebra of the G2 group of automorphisms of the octonions, while the re-
maining 4 exceptional Lie algebras, f4, e6, e7 and e8, are induced by the octonions via
the Freudenthal-Tits magic square construction. About simple Lie superalgebras, the ex-
ceptional Lie superalgebras G(3) and F (4) entering the Kac’s classification [3] admit an
octonionic realization [4].

We demanded octonionic covarariance as a key ingredient to derive the F (4) models.
This means that the differential operators of the spectrum-generating superalgebra are
expressed in terms of the octonionic structure constants.

We obtained at first the most general, octonionic covariant and scale invariant, N = 8
supersymmetric quantum mechanics defined on 8 bosonic and 8 fermionic fields. We
further implemented the superconformal constraint which selects a critical theory with
enhanced symmetry. The existence, at the critical value, of 7 linear constraints for the
28 R-symmetry generators, unambiguously determines F (4) (whose R-symmetry is so(7),
with 21 = 28 − 7 generators) as the dynamical symmetry superconformal algebra of the
model.

The model is characterized by “quasi-nonassociativity”. The Calogero’s coupling con-
stants are expressed in terms of the octonionic structure constants Cijk which encode the
nonassociativity of the octonions.

Octonionic covariance was used in [5] to construct the most general classical N = 8 ex-
tended supersymmetric one-dimensional sigma-model in the Lagrangian framework based
on the (1; 8; 7) irreducible supermultiplet, see [6], of the N = 8 worldline supersymmetry.
It was proved in [7] that an F (4) superconformally invariant, one-dimensional sigma-model
results from a suitable restriction of the parameters entering the N = 8, (1; 8; 7) theory.
In [8] and [9] the systematic construction of one-dimensional superconformal algebras in
terms of worldline supermultiplets (D-module representations) was obtained. We recall
that one-dimensional superconformal algebras are simple Lie superalgebras satisfying a
class of restrictions, resulting from their possible interpretation as dynamical symmetries
of superconformal mechanics. Here it is sufficient to remind that the even sector should
be decomposed into a direct sum sl(2) ⊕ R, with R known as the R-symmetry algebra,
while the odd sector is decomposed into a set of N +N , dually related generators.

From [8, 9] follows, in particular, that octonionic-covariant D-module realizations are
encountered at N = 7 for the exceptional G(3) superalgebra and at N = 8 for the
superalgebras D(4, 1) ≈ osp(8|2) and F (4).

It was noted in [10] that “trigonometric” D-module representations allow the con-
struction of worldline sigma-models which correspond to a classical (and superconformal)
version of the de Alfaro-Fubini-Furlan prescription.
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The quantization of these trigonometric models was first obtained in [11], by applying
standard techniques to pass from the classical Lagrangian to the quantum Hamiltonian
formulation. In particular deformed quantum oscillators with D(2, 1;α) as spectrum-
generating superalgebras were derived.

The method used in this paper allows to directly construct a quantum mechanical
system, bypassing the scheme of deriving at first a classical Lagrangian model which
is later quantized in the Hamiltonian framework. For this reason we did not need to
introduce a classical Lagrangian trigonometric version (which has not been constructed,
yet) of the classical F (4) one-dimensional sigma-model introduced in [7].

We postpone to the Conclusions a further discussion about the results of our model
and about some issues of nonassociativity in physics.

The scheme of the paper is as follows. In Section 2 we introduce the octonionic-
covariant formulation. In Section 3 we derive the octonionic-covariant, scale invariant,
N = 8 supersymmetric quantum mechanics. In Section 4 we derive the differential real-
ization of the F (4) Lie superalgebra. The deformed F (4) oscillator is introduced in Section
5. In Section 6 the spectrum of the theory is obtained and the quasi-nonassociativity of
the model is discussed. In the Conclusions we comment about our results and the issue
of nonassociativity in physics.

2 Octonions and the octonionic covariance

The octonionic multiplication is encoded in the basic relations, for the seven imaginary
octonions ei (i = 1, 2, . . . , 7),

eiej = −δij + Cijkek. (1)

Here and in the following, unless otherwise specified, the sum over repeated indices is
understood. Cijk is the totally antisymmetric octonionic structure constant. Besides the
rank 3 Cijk tensor, two more totally antisymmetric constant tensors (of rank 4 and 7) are
compatible with the octonionic multiplication; they are given by Cijkl and εijklmnp. We
assume the rank 3, 4, 7 totally antisymmetric tensors to be normalized according to:

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1,

C4567 = C2356 = C2437 = C1357 = C1346 = C1276 = C1245 = 1,

ε1234567 = 1. (2)

Due to a relation involving the three totally antisymmetric constant tensors, only two of
them are independent. The relation can be expressed as

6Cijkl = εijklmnpCmnp. (3)

The seven imaginary octonions can be conveniently arranged in the famous Fano’s pro-
jective plane (see [12] for a review). The non-vanishing Cijk’s correspond to three points
belonging to one of its seven lines. The non-vanishing Cijkl’s correspond to the four points
which are complementary to each one of the seven lines.
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The octonions induce a realization of the Clifford algebra Cl(0, 7) based on the fol-
lowing construction. Let x = x0 + xjej be a real octonion, parametrized by eight real
numbers x0, xj ∈ R, so that ~x = (x0, xj)

T is an 8-component real vector. The mapping

x 7→ eix = x′i (4)

can be expressed as a linear transformation

~x′i = γi~x. (5)

It is easily proved that the seven 8× 8 matrices γi so induced satisfy the Cl(0, 7) Clifford
algebra fundamental relation

γiγj + γjγi = −2δijI8, i, j = 1, 2, . . . , 7 (6)

(here and in the following In denotes the n× n identity matrix).
Furthermore, their entries are expressed in terms of the octonionic structure constants

Cijk according to

(γi)LM =

(
0 δim
−δil Cilm

)
, (7)

where L, M take values L = 0, l and M = 0,m, with l,m = 1, 2, . . . , 7. The (7) matrices
are obtained, up to an overall sign, from the (4) map.

The double role played by Cijk should be duly noted. Entering (1) it is responsible
for the non-associativity of the octonionic multiplication. We have, e.g.:

(e1e2)e4 = e3e4 = −e5 6= e1(e2e4) = e1e6 = e5. (8)

On the other hand Cijk enters (6) as well, providing a matrix realization for the associative
Cl(0, 7) Clifford algebra. One can say that, in this matrix realization, Cijk encodes the
remnant of the non-associativity of the octonions.

The Cl(0, 7) Clifford algebra gives a basis for the 64-dimensional vector space of 8× 8
real matrices. Schematically, the elements of given rank r = 0, 1, 2, 3 (entering γ(r)) are

γ(0) ≡ I8,
γ(1) ≡ γi,

γ(2) ≡ γiγj (i < j),

γ(3) ≡ γiγjγk (i < j < k). (9)

Due to Hodge duality, the product of 7−r different matrices γi is equivalent to the product

of matrices of rank r. There is a total number of

(
7
r

)
matrices of rank r, so that

(
7
0

)
+

(
7
1

)
+

(
7
2

)
+

(
7
3

)
= 1 + 7 + 21 + 35 = 64. (10)

γ(0) and γ(2) provide the basis for the 36 symmetric 8 × 8 matrices, while γ(1) and γ(3)

provide the basis for the 28 antisymmetric 8× 8 matrices.
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The introduction of supersymmetry requires acting on a Z2-graded vector space of
even and odd elements (identified with bosons and fermions), with block-antidiagonal
supersymmetry operators. In the present case this can be obtained by doubling the size
of the vector space by introducing the nine 16 × 16 matrix generators of the Cl(9, 0)
Clifford algebra ΓA (A = 1, 2, . . . , 8, 9) through the positions

Γi =

(
0 γi
−γi 0

)
, Γ8 =

(
0 I8
I8 0

)
, Γ9 =

(
I8 0
0 −I8

)
. (11)

In the following different symbols are employed for different ranges of values: i, j =
1, 2, . . . , 7, while I, J = 1, 2, . . . , 8 and A,B = 1, 2, . . . 9.

We have, by construction,

ΓAΓB + ΓBΓA = 2δABI16. (12)

The block-diagonal matrix Γ9 can now be identified with the Fermion Parity Operator of
the Supersymmetric Quantum Mechanics. Its ±1 eigenvalues determine the 8-dimensional
bosonic (+1) and fermionic (−1) vector spaces.

The 256-dimensional vector space of 16×16 real matrices can be expressed in terms of

the Cl(9, 0) Clifford algebra matrix generators ΓA’s. The different

(
9
r

)
rank r tensors

are compactly written as Γ(r) ≡ ΓA1 . . .ΓAr for A1 < A2 < . . . < Ar (r = 0, 1, 2, 3, 4). The
analogue of formula (9) now reads(

9
0

)
+

(
9
1

)
+

(
9
2

)
+

(
9
3

)
+

(
9
4

)
= 1 + 9 + 36 + 84 + 126 = 256. (13)

Due to the different status of Γ9 (which is block-diagonal) with respect to the 8 remaining
ΓI ’s (which are block-antidiagonal), a more refined decomposition singles out Γ9. A
further refinement singles out Γ8 (which is scalar with respect to the octonionic imaginary
index) from the seven Γi’s which carry the vectorial index i associated to the imaginary
octonions. Taking into account this 7 + 1 + 1 decomposition, we arrive at the following
table. The second column denotes the block diagonal (dg) versus the block antidiagonal
(ad) character of the matrices; the third column denotes their symmetry (SYM) versus
antisymmetry (AS) property; the last column indicates their total number Nb. The
symbol Γ(r) (for r not in boldface font) denotes Γ(r) ≡ Γi1 . . .Γir for i1 < i2 < . . . < ir,
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with ir ranging from 1 to 7. We have

dg/ad SYM/AS Nb

I dg SYM 1

Γ(1) ad SYM 7
Γ8 ad SYM 1
Γ9 dg SYM 1

Γ(2) dg AS 21
Γ(1)Γ8 dg AS 7
Γ(1)Γ9 ad AS 7
Γ8Γ9 ad AS 1

Γ(3) ad AS 35
Γ(2)Γ8 ad AS 21
Γ(2)Γ9 dg AS 21

Γ(1)Γ8Γ9 dg AS 7

Γ(4) dg SYM 35
Γ(3)Γ8 dg SYM 35
Γ(3)Γ9 ad SYM 35

Γ(2)Γ8Γ9 ad SYM 21

(14)

3 Scale-invariant N = 8 Supersymmetric Quantum

Mechanics

We are now in the position to introduce the N = 8 Supersymmetric Quantum Mechanics,
defined by the (anti)commutators

{QI , QJ} = 2δIJH,

[H,QI ] = 0. (15)

The eight supersymmetry operators QI are Hermitian and block-antidiagonal. H is a
Hamiltonian which can be expressed as

H = −1

2
∂2xI + V (x), (16)

where V (x) is a block-diagonal, real, symmetric matrix potential.
Since we are interested in Superconformal Quantum Mechanics (and the oscillator

models possessing the associated superalgebra as dynamical symmetry), we investigate
at first the condition to obtain scale-invariant Supersymmetric Quantum Mechanics. It
follows, in particular, that the potential V (x) should be expressed as

V (x) =
1

x2
V, (17)

where V is a block-diagonal, constant, symmetric (V T = V ) matrix.
For the moment we are working with 16× 16 real matrices. It makes sense to express

the differential part entering QI ’s to be proportional to ΓIΓ9∂x. This set of operators
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indeed satisfies the requirements of being Hermitian and block-antidiagonal. Concerning
the potential terms, proportional to 1

x
, we assume the most general ones satisfying the

criteria of being block-antidiagonal, symmetric and octonionic covariant. Under these
assumptions we propose the following Ansatz for Q8 and Qi’s:

Q8 =
1√
2

(
Γ8Γ9∂x +

1

x
E8

)
, E8 = aCijkΓiΓjΓkΓ9 + bΓ8,

Qi =
1√
2

(
ΓiΓ9∂x +

1

x
Ei

)
, Ei = cCijkΓjΓkΓ8Γ9 + dCijklΓjΓkΓlΓ9 + eΓi, (18)

where the constants a, b, c, d, e are real coefficients to be determined by the closure of (15).
The requirement {Qi, Qj} = 0 for i 6= j is solved for either

d =
1

3
c, e = −1

2
+ 6c, (19)

or

d = −1

3
c, e =

1

2
+ 6c. (20)

Both restrictions produce a Hamiltonian H, invariant under N = 7 supersymmetries,
possessing a diagonal potential. The constant matrix V = diag(v1, v2, v3, . . . , v16) is given,
in case (19) by

v1 = . . . = v8 = −1
8

+ 32c2, v9 = 3
8

+ 8c+ 32c2, v10 = . . . = v16 = 3
8
− 8c+ 32c2.(21)

In case (20) V is given by

v1 = 3
8
− 8c+ 32c2, v2 = . . . = v8 = 3

8
+ 8c+ 32c2, v9 = . . . = v16 = −1

8
+ 32c2. (22)

A scale-invariant N = 8 Supersymmetric Quantum Mechanics is recovered by further
setting, in both cases,

a = −1

3
c, b = e. (23)

The scale-invariant Hamiltonians H, with matrix potentials determined by either (21) or
(22), are N = 8 supersymmetric. They depend on an arbitrary real coupling constant c.

4 The superconformal algebra realization

The introduction of a superconformal algebra requires the presence of eight operators Q̃I ,
the superconformal partners of the supercharges QI . They have to be block-antidiagonal
and, for dimensional reason, proportional to x. The anticommutators {QI , Q̃J} should
produce the dilatation operator D (from I = J) and the R-symmetry generators (from
I 6= J). The dilatation operator D should contain a term proportional to x∂xI. This

requirement rules out the most natural choice for Q̃I , consisting in setting Q̃I ∝ xΓI . The
anti-Hermitian choice Q̃I ∝ xΓIΓ9, on the other hands, nicely works. In order to have
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Hermitian operators Q̃I , we therefore need to introduce the imaginary unit i. It follows
that, while scale-invariant N = 8 Supersymmetric Quantum Mechanics can be realized
on 8 real bosonic and 8 real fermionic fields, in order to have N = 8 Superconformal
Quantum Mechanics, we need to double (counting in real components) the number of
fields, acting on 8 complex bosonic and 8 complex fermionic fields.

Conveniently normalized, the operators Q̃I ’s are chosen to be

Q̃I =
i√
2
xΓIΓ9. (24)

They satisfy the anticommutators

{Q̃I , Q̃J} = 2δIJK, (25)

where

K =
1

2
x2I16. (26)

The next topic consists in investigating the anticommutators {QI , Q̃J} and determinining
under which conditions (if any) an N = 8 superconformal algebra is recovered.

At any given I we have

{QI , Q̃I} = −i(x∂x +
1

2
)I16 := D. (27)

Therefore, without loss of generality, we can set

{QI , Q̃J} = δIJD +RIJ , (28)

where, for I 6= J ,

RIJ =
i

2
(−ΓIΓJ + {EI ,ΓJΓ9}). (29)

We recall that the operators EI have been introduced in (18). Either the choice (19,23)
or the choice (20,23) of the real parameters have been assumed. For both choices, the
RIJ ’s turn out to be antisymmetric with respect to the I ↔ J exchange:

RIJ = −RJI . (30)

In order to guarantee the closure, as Lie superalgebra, of the set of generators
H,D,K,QI , Q̃I , RIJ , we need to check under which condition the RIJ ’s operators form
a closed (R-symmetry) Lie algebra and the fermionic operators QI ’s (Q̃I ’s) belong to an
R-symmetry representation.

These two requirements select specific values for c entering (18). With the choice (19)
for d, e, the value of c is fixed to be c = 1

12
. Taking into account (23), the parameters

a, b, c, d, e entering (18) are thus determined to be

a = −d = − 1
36
, c = 1

12
, b = e = 0. (31)
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With the choice (20) for d, e, the selected value of c is c = − 1
12

. The parameters a, b, c, d, e
entering (18) are given in this case by

a = d = 1
36
, c = − 1

12
, b = e = 0. (32)

The two choices turn out to be equivalent. In the first case the potential is expressed, see
(21), by

v1 = . . . = v8 = 7
72
, v9 = 91

72
, v10 = . . . = v16 = − 5

72
. (33)

In the second case, see (22), the potential is expressed by

v1 = 91
72
, v2 = . . . = v8 = − 5

72
, v9 = . . . = v16 = 7

72
. (34)

If we express the first Hamiltonian H1, in equal blocks decomposition, as

H1 =

(
HB 0
0 HF

)
, (35)

the second Hamiltonian H2 is obtained by exchanging bosons with fermions through a
similarity transformation induced by Γ8:

H2 =

(
HF 0
0 HB

)
= Γ8H1Γ8. (36)

Any operator g2 obtained from the c = − 1
12

choice is related to an operator g1 obtained
from the c = 1

12
choice via the similarity transformation

g2 = Γ8g1Γ8. (37)

In the following, without loss of generality, we work with the choice of parameters given
by (32).

The antisymmetry of RIJ for I 6= J implies that there are at most 28 generators
defined by (28). One can nevertheless verify the existence, at the selected c = ± 1

12
values,

of 7 linear constraints satisfied by the RIJ ’s. This results in a total number of 21 linearly
independent generators. This is the number of R-symmetry generators entering the F (4)
superalgebra (whose R-symmetry is so(7)).

Within the c = − 1
12

choice the seven constraints aree covariantly expressed as

2Ri8 + CijkRjk = 0. (38)

As a consequence of these relations, the 21 linearly independent generators can be accom-
modated into the rank 2 antisymmetric tensor Rij.

We explicitly present for c = − 1
12

, in a covariant form, the non-vanishing (anti)commutators
involving the R-symmetry generators Rij. We have

[Rij, Qk] = − i
3
CijkQ8 +

i

3
CijklQl + iδikQj − iδjkQi,

[Rij, Q8] =
i

3
CijkQk (39)
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and, similarly,

[Rij, Q̃k] = − i
3
CijkQ̃8 +

i

3
CijklQ̃l + iδikQ̃j − iδjkQ̃i,

[Rij, Q̃8] =
i

3
CijkQ̃k. (40)

Furthermore, after lengthy but straightforward computations, the R-symmetry commu-
tators can be covariantly expressed as

[Rij, Rkl] = i(δikRjl − δilRjk − δjkRil + δjlRik) +

− i
6

(δikCjlmnRmn − δilCjkmnRmn − δjkCilmnRmn + δjlCikmnRmn) +

i

3
(CijkmRml − CijlmRmk − CklimRmj + CkljmRmi) +

i

3
(CijmCklnRmn).

(41)

Despite the appearance in the right hand side of (39,40,41) of the rank 3 and rank 4 totally
antisymmetric octonionic structure constants, the graded Jacobi identities are satisfied by
construction.

The overall result here presented is a covariant realization, in terms of first-order
and second-order matrix differential operators, of the exceptional Lie superalgebra F (4),
whose even sector is given by sl(2)⊕ so(7) and whose odd sector contains 2× 8 = 16 odd
generators. The operators H,D,K close the sl(2) subalgebra, with the dilatation operator
D being the Cartan’s element. The so(7) subalgebra is realized by the Rij generators,

while the odd sector is given by the operators QI ’s and Q̃I ’s.

5 The exceptional F (4) deformed oscillator

In Section 4 we proved that the scale-invariant N = 8 supersymmetric Hamiltonians H
introduced in Section 3 become superconformal (with an F (4) dynamical symmetry) at
the critical values c = ± 1

12
. The resulting superconformal Hamiltonian, up to similarity

transformations, is unique.
We introduce now the analogue of the De Alfaro-Fubini-Furlan construction [1], pre-

senting the (deformed) quantum oscillator possessing the exceptional Lie superalgebra
F (4) as its dynamical symmetry. The deformed oscillator Hamiltonian is given by the
linear combination H+K, where K is introduced in (26). K adds the oscillator damping
term to the Calogero potentials.

It is particularly rewarding to investigate the properties of the H+K deformed oscilla-
tor Hamiltonian because it possesses a (degenerate) ground state with a discrete, bounded
from below, spectrum.

Both Hamiltonians, H and H +K, can be compactly written as

Hε = −1

2
∂2xI16 +

1

2
εx2I16 +

1

x2
V, V = diag(v1, v2, . . . , v16), (42)

for

v1 = 91
72
, v2 = . . . = v8 = − 5

72
, v9 = . . . = v16 = 7

72
, (43)
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in such a way that H is recovered for ε = 0 and the deformed oscillator Hamiltonian
H +K is recovered for ε = 1.

Eight pairs of creation/annihilation operators (I =, 1, 2, . . . , 7, 8) are introduced through
the positions

aI = QI − iQ̃I , a†I = QI + iQ̃I . (44)

For later convenience we also introduce the symbol I = 0, 1, . . . , 7, identifying
a0 := a8, a

†
0 := a†8 and Γ0 := Γ8.

The Hamiltonian Hε=1 is recovered, for any I, from the anticommutators

1

2
{aI , a

†
I
} = Hε=1. (45)

The commutators give

[aI , a
†
I
] = I16 + YI , (46)

where YI = −[EI ,ΓIΓ9] are constant and traceless diagonal matrices. We have

YI = diag(y1, . . . , y16),

y1 = −7
3
, y2 = . . . = y8 = 1

3
, y9+J = −1

3
+ 8

3
δIJ . (47)

YI anticommutes with both aI and a†
I
:

{aI , YI} = {a†
I
, YI} = 0 . (48)

Due to these properties, aI (a†
I
) are annihilation (creation) operators such that

[Hε=1, aI ] = −aI , [Hε=1, a
†
I
] = a†

I
. (49)

Each I defines 16 lowest weight representations |λ(I)k > (k = 1, 2, . . . , 16) introduced by
the condition

aI |λ
(I)
k > = 0. (50)

Each |λ(I)k > lowest weight vector is a 16-dimensional vector whose only non-vanishing
component is in the k-th position.

We recall that a vector is bosonic (fermionic) if it is an eigenvector of the Fermion
Parity Operator Γ9 with eigenvalue +1 (−1). It is straightforward to show that the bosonic

lowest weight vectors |λ(I)k >, which are obtained for k = 1, 2, . . . , 8, do not depend on I.
They are annihilated by all eight operators aI . The lowest weight bosonic wave functions
are proportional to

|λ(I)1 > ∝ (x−7/6e−
1
2
x2 , 0, . . . , 0)T ,

|λ(I)j > ∝ (δjrx
1/6e−

1
2
x2)T (j = 2, . . . , 8; r = 1, . . . , 16). (51)
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The picture is quite different for the fermionic lowest weight vectors |λ(I)k > with k =
9, 10, . . . , 16. None of them is annihilated by all eight operators aI .

For I = 0, 1, . . . , 7, the fermionic lowest weight vector |λ(I)
9+I

>, proportional to,

|λ(I)
9+I

>∝ (δ9+I,rx
7/6e−

1
2
x2)T (52)

is only annihilated by the operator aI .

The fermionic lowest weight vectors |λ(J)
9+I

>, with J 6= I, proportional to

|λ(J)
9+I

>∝ (δ9+I,rx
−1/6e−

1
2
x2)T , (J 6= I), (53)

are annihilated by the seven operators aJ , J 6= I, while aI |λ(J)9+I
>6= 0. It follows from

(53) that |λ(J1)

9+I
>= |λ(J2)

9+I
> for any pair J1, J2 6= I.

We have determined a total number of 24 (8 bosonic and 16 fermionic) different lowest
weight vectors.

Their lowest weight energy E
(I)
k is computed from the relation

E
(I)
k =

1

2
< λ

(I)
k |{aI , a

†
I
}|λ(I)k >=

1

2
< λ

(I)
k |[aI , a

†
I
]|λ(I)k >=

1

2
+

1

2
< λ

(I)
k |YI |λ

(I)
k > .

(54)

We get

E
(I)
1 = −2

3
,

E
(I)
k =

2

3
, k = 2, 3, . . . , 8,

E
(I)

9+J
=

1

3
+

4

3
δJI , J = 0, 1, . . . , 7. (55)

We will see in the following the implication of these results for the construction of the
Hilbert space associated with the F (4) deformed oscillator.

The eight creation (annihilation) operators a†
I

(aI) are all unitarily equivalent. This

is implied by the existence of seven unitary matrices Ui (UiU
†
i = UiU

†
i = I16) satisfying

UiΓiU
†
i = Γ8, UiEiU

†
i = E8, UiYiU

†
i = Y8, [Ui, V ] = 0. (56)

In the above relations the repeated indices are not summed.
As a consequence of (56) we have, in particular,

UiaiU
†
i = a0, Uia

†
iU
†
i = a†0 (57)

for any i = 1, 2, . . . , 7.
An explicit expression for U1 is given by

U1 = E1,1 + E2,2 + E3,3 + E4,4 − E5,8 + E6,7 − E7,6 + E8,5 +

E9,10 − E10,9 + E11,12 − E12,11 + E13,13 + E14,14 + E15,15 + E16,16, (58)



CBPF-NF-002/17 13

where Er,s denotes the 16 × 16 matrix with entry 1 at the intersection of the r-th row
with the s-th column and 0 otherwise.

Similar expressions exist in the remaining cases (i = 2, . . . , 7). For simplicity they are
not reported here.

As a corollary of the unitary relations (57), the same set of lowest weight energy
values (one eigenvalue 2

3
, seven eigenvalues −2

3
, seven eigenvalues 1

3
and one eigenvalue 5

3
)

is encountered for each annihilation operator aI .

6 Hilbert space and quasi-nonassociativity

We determine the Hilbert space and the spectrum of the system with F (4) as spectrum-
generating superalgebra.

We point out that the bosonic lowest weight vector |λ1 >≡ |λ(I)1 > (the I dependence
is dropped since the same lowest weight vector is shared by all I’s) of energy −2

3
, see (55),

is not normalized as a square integrable function since its norm is negative.
Indeed the norm of the function f(x) = x−

7
6 e−

1
2
x2 is computed as

(f, f) =
∫ +∞
−∞ |f(x)|2dx =

∫ 0

−∞ |f(x)|2dx+
∫ +∞
0
|f(x)|2dx.

By setting y = −x for x < 0, we get
∫ 0

−∞ |f(x)|2dx = −
∫ 0

∞ |(−y)−
7
6 e−

1
2y2|2dy =

|(−1)−
7
6 |2
∫∞
0
y−

7
3 e−y

2
, so that (f, f) = (|(−1)−

7
6 |2 + 1)

∫∞
0
x−

7
3 e−x

2
dx.

After the t = x2 change of variable we get

(f, f) =
1

2
(|(−1)−

7
6 |2 + 1)

∫ +∞

0

t−
5
3 e−tdt =

1

2
(|(−1)−

7
6 |2 + 1)Γ(−2

3
) < 0. (59)

The eight independent fermionic lowest weight vectors resulting from |λ(J)
9+I

>, with J 6= I,

have energy eigenvalue +1
3

= −2
3

+ 1. They correspond to the first excited states a†
I
|λ1 >.

Contrary to |λ1 >, their norm is positive. Nevertheless, they have to be excluded from a
Hilbert space since, by applying the annihilation operator aI , we obtain the state |λ1 >
with negative norm: aIa

†
I
|λ1 >∝ |λ1 >.

The lowest weight representation defined by |λ1 > (which also includes the |λ(J)
9+I

>,

with J 6= I, vectors) does not define a Hilbert space because not all states are correctly
normalized.

The Hilbert space induced by the F (4) oscillator model is obtained by the direct sum
of the remaining lowest weight representations.

It is convenient to rename as bi (i = 1, 2, . . . , 7) the seven bosonic lowest weight vectors

λi+1 ≡ λIi+1 from (51) with positive energy eigenvalue 2
3
. The eight fermionic lowest weight

vectors |λ(I)
9+I

> from (52), with energy eigenvalue 5
3

= 2
3

+ 1, are the first excited states
obtained from the bi’s bosonic states.

The construction goes as follows. We note at first that the creation operators a†
I

satisfy
the superalgebra

{a†
I
, a†

J
} = 2δIJZ,

[Z, a†
I
] = 0, (60)
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which is formally equivalent to the N = 8 superalgebra (15) of the Supersymmetric
Quantum Mechanics. It should be noted however that the operator Z, defined by the
first equation of (60), is not the Hamiltonian, but a raising operator. The superalgebra
(60) is an implementation of the concept of “soft supersymmetry” discussed in [11].

It is convenient to set fi ≡ |λ(i)9+i > and f0 ≡ |λ(0)9 >, so that we obtain

fi = a†0bi,

f0 = −a†1b1 = −a†2b2 = . . . = −a†7b7 (61)

(for any i, f0 = −a†ibi).
The covariant relation

a†ibj = Cijkfk = Cijka
†
0bk (62)

is satisfied.
The vector space spanned by the direct sum of the seven lowest weight representations

induced by the bi’s vectors admits, by construction, normalized vectors. This Hilbert space
corresponds to L2(R)16, a 16-ple of L2(R), the square-integrable functions on the real line.

Let us introduce the state g0, given by

g0 := a†0f0. (63)

Its energy eigenvalue is 8
3
. We collectively denote as wr, r = 1, 2, . . . , 16 (by setting

wi = bi, w8 = f0, w8+i = fi, w16 = g0), the (7; 8; 1) states bi; f0, fi; g0 of energy eigenvalues
(2
3
; 5
3
; 8
3
), respectively. Let Er denotes the energy eigenvalue of wr. The Hilbert space of

the theory is spanned by the states

Znwr, r = 1, . . . , 16, n ∈ N0, (64)

where the operator Z has been introduced in (60).
The energy eigenvalue of Znwr is

En,r = 2n+ Er. (65)

The energy spectrum of the theory is

2
3
, 5
3
, 8
3
, 11

3
, . . . , (66)

Apart the ground state (which is 7 times degenerate), each excited level is 8 times degen-
erate:

(7, 8, 8, 8, . . .) (67)

The degenerate states of each energy level are accommodated into a representation of the
so(7) R-symmetry subalgebra.

The operator Z is introduced in (60) as square of the a†
I

operators. For this reason

the knowedge of the action of the a†
I

operators on the (7; 8; 1) states wr’s is sufficient
to reconstruct the whole semi-infinite tower of (7, 8, 8, 8, . . .) states. The states wr’s are
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accommodated into the (7; 8; 1) supermultiplet of theN = 8 worldline supersymmetry, see
[6]. This supermultiplet (contrary to, e.g., theN = 8 supermultiplets (k; 8; 8−k) with k =
2, 3, 4, 5, 6) preserves the octonionic covariance of the N = 8 worldline supersymmetry,
see [5].

The deformed (via Calogero potential terms) quantum oscillator induced by the ex-
ceptional superconformal algebra F (4) is a unique system (up to similarity transforma-
tions) which only exists at a critical value of the parameters. It can be characterized
by the property of “quasi-nonassociativity”. The meaning is that the model is deter-
mined by the octonionic structure constants. Indeed, the structure constants of the F (4)
dynamical symmetry superalgebra are expressed in terms of the rank 3 and rank 4 to-
tally antisymmetric octonionic structure constants, see formulas (39,40,41). More than
that, the “strange” rational coupling constants of the 1

x2
Calogero potential term in the

superconformal Hamiltonian (42) are given by the diagonal matrix (43), which reads as

V = diag(91
72
, −5
72
, −5
72
, −5
72
, −5
72
, −5
72
, −5
72
, −5
72
, 7
72
, 7
72
, 7
72
, 7
72
, 7
72
, 7
72
, 7
72
, 7
72

). (68)

The above values are derived from the octonionic structure constants Cijk through the
formula

V =
1

72
(Γ8 −

1

36
CijkΓiΓjΓk)ClmnΓlΓmΓn. (69)

The non-associativity of the octonions is encoded in the coupling constants of the F (4)
quantum oscillator.

7 Conclusions

The Hilbert space of the one-dimensional F (4) deformed quantum oscillator is given by
a 16-ple of square-integrable functions. The energy levels are quantized to be 2

3
+ N0.

The ground state of energy 2
3

is 7 times degenerate, while the excited states are 8 times

degenerate. The eight creation operators a†
I

close the N = 8 worldline superalgebra (60).
Therefore, the states of the seminfinite tower (7, 8, 8, 8, . . .) are interconnected by the

worldline supersymmetry induced by the irreducible, see [6], (7; 8; 1) supermultiplet.
The model is uniquely determined (up to similarity transformations). The associ-

ated superconformal quantum mechanics is obtained from the most general octonionic-
covariant and scale-invariant N = 8 supersymmetric quantum mechanics at a critical
value of enhanced F (4) dynamical symmetry.

The non-trivial Calogero’s coupling constants are expressed in terms of the octonionic
structure constants.

It is worth mentioning that, besides the construction of the F (4) model, other results
have been obtained by our investigation using the octonionic-covariant approach. We
excluded, at N=7, the existence of an octonionic covariant superconformal quantum
mechanics realized on 16 fields and with G(3) as spectrum-generating superalgebra. Even
if a priori possible, not such a model exists for any combination of the parameters allowed
by octonionic-covariance.
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The superalgebra D(4, 1) ≈ osp(8|2) is the spectrum-generating superalgebra of the
undeformed system (all Calogero’s coupling constants are set to zero) given by the di-
rect sum of 16 ordinary one-dimensional oscillators. The details of the construction will
be reported in a larger forthcoming paper devoted to a general derivation of spectrum-
generating superalgebras of (un)deformed quantum oscillators.

Introducing nonassociativity in physics and quantum mechanics is notoriously a tricky
business. So far, the unique truly nonassociative quantum mechanical system we are
aware of, based on the Jordan’s formulation of quantum mechanics, was derived in 1934
by Jordan, von Neumann and Wigner [13] and further analyzed in [14]. The observables
are accommodated in the 3 × 3 Hermitian octonionic matrices (the exceptional Albert
algebra).

There are several examples where nonassociative structures are relegated into the non-
observable sector of a quantum theory. For instance, the associativity deficit of the twisted
cocycle condition of quasi-Hopf algebra, defined in [15] and discussed in [16], is often
realized in canonical quantization, see [17], as a phase when projected onto the Hilbert
space of the theory. The phase is a unitary transformation which can be reabsorbed in
the normalized ray vector.

A different type of nonassociativity is encountered in the F (4) deformed quantum os-
cillator model here presented. The nonassociativity of the octonions is encoded, as “quasi-
nonassociativity”, in the Calogero coupling constants of the theory which are given, see
formula (69), in terms of the octonionic structure constants. The existence of such a
relation is a consequence of the model admitting an octonionic-covariant formulation.
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[17] I. Bakas and D. Lüst, JHEP 0401 (2014) 171; arXiv:1309.3172[hep-th].


