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This Nota de Fsica aims to shed further light on the origin of the cuspidal temper-

ature profile of non-equilibrium chains, namely the 1967 Rieder, Liebowitz and Lieb

heat conduction model. Our upgraded analysis shows that the first plateau – where

the cumulants of the heat flux reach their maxima – is related to the vanishing of

the (instantaneous) stationary state two-point velocity correlations for all pairs of

elements in the chain, Cv(i, j) ≡ limt→∞ 〈vi (t) vj (t)〉 = 0. Such behaviour is equiva-

lent to having a “phonon box”. For the second plateau, Cv(i, j) only vanishes when

one of the sites is a edge site; however, the sum of the stationary state two-point

velocity correlations over all pairs still equals zero,
∑
〈ij〉Cv(i, j) = 0, as happens

whenever the chain is linear. Bringing the non-linear β-Fermi-Pasta-Ulam nonequi-

librium model into play, we verify that the bulk plateau disappears and that in this

situation
∑
〈ij〉Cv(i, j) 6= 0. These results confirm a relation between heat transport

in non-equilibrium systems and a spatial propagator that is proxied by Cv(i, j).

Previous results. In our original Nota de Fsica (NF) [1], we started out from the

awkward temperature profile exhibited by the model introduced by Rieder, Lebowitz and

Lieb (RLL) [4]. We verify that the cuspidal of the local temperature behaviour lies in

mechanical properties of the model, namely absence of effective pinning of the chain.
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Assuming a chain of N coupled linear (k3 = 0) oscillators ruled by the set of equations,

m d2x1
dt2

= −γ dx1
dt
− k′ x1 − k1 (x1 − x2)− k3 (x1 − x2)3 + η1

m d2xi
dt2

= −k xi − k1 (2xi − xi+1 − xi−1)− k3
[
(xi − xi−1)3 + (xi − xi+1)

3]
m d2xN

dt2
= −γ dxN

dt
− k′ xN − k1 (xN − xN−1)− k3 (xN − xN−1)3 + ηN

, (1)

(2 ≤ i ≤ N − 1), where η is Gaussian distributed with,

〈ηi (t) ηj (t′)〉 = 2 γ Ti δij δ (t− t′) , (2)

[ TC(H) ≡ T1(N) and (i, j) = {1, N}] we have verified that is possible change twice from

the cuspidal temperature profile to a smooth temperature profile and vice-versa. At these

profile changes, a perfect plateau for the local canonical temperature across the chain is

computed, i.e., Ti = (TC + TH)/2 (for all i).

Explicitly, we found that the first plateau – at which the cumulants of the heat flux

reach their maximal value – reads

k′crit1 =
k

2
+

√
k2 + 4kk1

2
. (3)

whereas the second plateau is given by

k′crit2 = k + k1 +
γ2

m
. (4)

The two-point velocity correlation function. In a nonequilibrium of this kind

the leading flux is the heat flux

J ≡ k1
2
〈(xi − xi+1) (vi + vi+1)〉 = −κ∆T i ∈ (1, N − 1), (5)

(where κ represents the thermal conductance of the system and ∆T ≡ TH − TC) and

the temperature of the neighbours, namely the end particles, T1 and TN . Intuitively, by

increasing the pinning at the edges, we would insulate particles 1 and N from the bulk

and make their canonical temperatures T1 and TN , respectively, approach the temperature

of the reservoirs TC and TH . Note that because of the condition of stationarity,

lim
t→0
〈xi(t) vi(t)〉 = 〈vi(t)〉 = 0. (6)
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Hence, the heat flux is a proxy for the two-point position-velocity correlation function,

Cx v (i; δ = 1), where we define the two-point correlation function relating two generic

quantities u and w measured at different points separated by a lattice site distance equal

to δ as

Cuw (i, j) = Cuw (i; δ) ≡ lim
t→0
〈ui(t) wi+δ(t)〉 − 〈ui(t)〉 〈wi+δ(t)〉 . (7)

If u = w, then we simplify the notation to Cu (i; δ).

The matching of the maxima of the cumulant has a very particular meaning in con-

densed matter physics: it points to the emergence of a phase transition. Although we

could think of the plateau as the critical state separating the smooth state,

lim
N→∞

1

N

N/2∑
i=2

Ti − TN−i+1 < 0 (8)

from the cuspidal state,

lim
N→∞

1

N

N/2∑
i=2

Ti − TN−i+1 > 0 (9)

we rule out such approach because we do not verify another crucial feature that identifies

a transition, i.e., the divergence of the correlation length, ξ, characterising the average

over the sites of the lattice of the two-point correlation function of the square velocity,1

C̃v2 (δ) [see Appendix].
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FIG. 1. Next-nearest-neighbour two-point correlation function Cv (1) v k′ for the edge particle

i = 1. The remaining parameters are m = k1 = γ = 1, k = 1/2, TC = 1 and TH = 2. It is

visible that the correlation vanishes at k′crit1 = 1, the same point we have the cumulants of the

heat flux reaching their maximal values. For k′crit2 = 5/2 we have Cv (1) ≈ 0.11.

1 v2i can be seen as a measure of the instantaneous temperature at site i.
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So, what does actually happen when we pass from the cuspidal to the smooth profile

and vice versa? The key feature to understanding the phenomenon does not lie in Cv2

but in the two-point correlation function of the velocity Cv. From our calculations, C̃v(1)

vanishes at k′crit1 [see Fig. (1) for an illustration], for all the neighbouring sites of the chain,

whether they are edge or bulk particles. At this value of k′, the two-point correlation

function Cv(1; 1) is the same as its asymptotic value k′ → ∞ that is equivalent to the

picture of having perfectly curbed particles at the edges of the chain.

Figure 2 shows the behaviour of Cv(i; δ) for different values of i and δ for a chain

N = 11. Observe that the correlations are symmetrical with respect to the middle of

the lattice with the overall analysis of these curves giving us an interesting insight over

the mechanics of the crossover; specifically, as k′ increases, in the vicinity of k′ = 1,

the value of Cv(1; 1) increases from a negative to a positive value. Simultaneously, the

local temperature T2 also increases monotonically. We may interpret that twofold: on

the one hand, the typical vibration mode, for k′ < 1, is antisymmetric for neighbours

near the colder reservoir, decreasing with distance; on the other hand, it is symmetric for

the neighbours near the hotter reservoir. The typical antisymmetric motion gives rise to

velocity anti-correlation, (Cv(i; δ) < 0), while the typical symmetric motion gives rise to

the positive correlations. Furthermore, the latter assures that the particles are in a more

energetic (kinetic) state than the former. As a matter of fact, this is reflected in the local

temperatures since by increasing the surface pinning to k′ = 1 the value of Cv(i; δ) for all

i and δ vanish and the bulk reaches a perfect temperature plateau. A system of masses

and springs at equilibrium should present null velocity correlations due to the quadratic

character of the kinetic energy distribution.

As we increase k′ somewhat past its critical value, the next nearest neighbours velocity-

velocity correlation changes sign. That means the probability of occupation of modes

which favour anti-symmetric v1v2-vibrations decreases whereas the probability of occu-

pation of modes that are related to symmetric v1v2-vibrations increases. The fact that

T2 (kinetic energy content) increases, is completely compatible with the anti-symmetric

vibration modes being less energetic than the symmetric ones. Simultaneously, the inverse

happens at the other extremity of the chain, i.e., the local energy scale, TN−1, decreases

as the correlation CvN−1
(1) = 〈vN vN−1〉c switches from positive to negative at k′ = 1.



CBPF-NF-009/16 5

0 1 2 3 4 5 6

-0.05

0.00

0.05

k'

〈v
iv

j〉
c

〈v1v2〉c

〈v1v3〉c

〈v1v4〉c

〈v2v4〉c

〈v1v7〉c

0 1 2 3 4 5 6

-0.05

0.00

0.05

k'

〈v
iv

j〉
c

〈v10v11〉c

〈v9v11〉c

〈v8v11〉c

〈v8v10〉c

〈v5v11〉c

FIG. 2. Two-point velocity correlation function for the particles indicated on the right-hand

side legend of each panel. for the extremities and the bulk particles are shown. For k′ = 1

all the correlations vanish and the set of local temperatures form a plateau. For k′ = 5/2,

the temperature plateau reappears as well as the vanishing of the two-point velocity correlation

function except for Cv(1; 1) and Cv(N−1; 1). The correlations are symmetric around the middle

of the lattice.

This is completely consistent with vibrations switching from energetic symmetric modes

to less energetic anti-symmetric modes.

When the two-point velocity-correlations between all neighbours vanish at k′ = 1

there is a strong heat current through the system and even and odd order cumulants

reach maxima at that point. As k′ increases the current whereas its fluctuations decrease

and the even cumulants will reach eventually their equilibrium values – the “phonon box”

values which are smaller than the plateau point values – while the odd ones vanish at the

limit of null heat flux as k′ →∞.

The impact of nonlinearities. It is well known that nonlinear interactions may change

some properties of heat transport, because they can be related to the localisation of the

vibration modes across the chain and hence to the phonons scattering. Some previous

results using FPU-like models in one dimensional chains have checked that the ballistic

transport of energy is slightly changed when cubic or quartic interactions are present [16]

even in two-dimensional systems like graphene [17]. Even though observing a temperature

gradient in the system, it is verified that the thermal conductivity for one dimensional

non-linear system behaves like, κ ∝ Nα, with 1
3
≤ α ≤ 1

2
[2, 10, 11], which becomes infinite

in the thermodynamic limit. All these properties are well discussed in literature [2, 3, 5,

10, 12], where numerical treatment is a standard procedure to obtain the results, but some
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authors [14, 15] have been proposing analytical approaches to verify more thermostatistical

properties in non-linear models.

Let us now assume k3 6= 0 in the equations of motion Eq. (1) and in order to guaran-

tee the accurateness of our perturbative method this new non-linear coupling obeys the

relation k3TH
k21
� 1 [9]. Figure 3 shows that we no longer see the vanishing of Cv(i; δ) for

all pairs at k′crit1 = 1, and the perfect symmetry between opposite pairs is subtly broken.
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FIG. 3. Left and right panels show that the zero correlation occurs at different points for all

pairs when one analyses these functions near the point k′crit1 = 1.

The fact that the correlations cannot vanish simultaneously for every pair and a given

k′ in a nonlinear model is quite straightforward to verify. It is possible to notice that

one of the properties that define the zero correlation is the “pseudo” bulk equilibrium,

since the nonlinear interactions generate a temperature gradient along the chain, the state

related to the existence of a plateau is now unattainable.

Besides the role played in the behaviour of heat transfer and the distribution of temper-

atures, it is clear from Fig. 3 that the cubic interaction (with small k3) favours mostly the

antisymmetric modes of the chain, since almost all Cv(δ) cross the k′ axis after k′crit1 = 1.

It is important to stress that the previous discussion over the distribution of modes with

respect to the middle of the chain for multiples values of k′ is not straightforward now,

because the way phonons interact is considerably modified by the anharmonicities in the

system. Since that would go beyond the scope of this work, we have omitted a more

detailed study regarding the methods and properties of nonlinear chains used here, which

will be published elsewhere.
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Discussion. The results we have presented in Figs. 2 and 3 seem to connect with

previous results on the analysis of the energy and momentum correlation functions in

equilibrium systems subject perturbations. Enclosing this situation within linear response

theory, transport coefficients like the conductance κ (as well as the thermal conductivity)

and the effective coefficient of viscosity of the system were related to the second derivative

in order to time of the heat diffusion,2〈
x(t)2

〉
E
≡ 1

NE

∫ (
x(t)2 − 〈x(t)〉2E

)
〈∆E(x, t)∆E(y, t)〉 dy , (10)

and the momentum diffusion〈
x(t)2

〉
p
≡ 1

Np

∫ (
x(t)2 − 〈x(t)〉2p

)
〈∆p(x, t)∆p(y, t)〉 dy , (11)

respectively (full details can be easily found in Sec. 2 of [18]). Following both definitions,

it is not hard to understand that Cv(i; δ) = m−2 〈∆p(i, t) ∆p(i+ δ, t)〉.

The present results are different of those aforementioned because our two-point ve-

locity correlation functions are not time lagged and averaged over the steady state of a

nonequilibrium system; nonetheless, the two Figures 2 and 3 point to interesting facts.

In the harmonic case — that includes the RLL model — the sum over all pairs of the

velocity correlation function,

C ≡
N−1∑
i=1

N−i∑
δ=1

Cv(i; δ) (12)

vanishes,

C|k3=0 = 0. (13)

Moreover, at the first plateau,

Cv(i; δ) |(k3=0,k′crit1)
= 0, ∀i,δ, (14)

whereas at the second plateau

Cv(i; δ) |(k3=0,k′crit2)
6= 0, if i = {1, N − 1} and δ = 1

and (15)

Cv(i; δ) |(k3=0,k′crit2)
6= 0, if i = {2, . . . , N − 1}

2 In a continuous approach.
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On the other hand, if k3 = 0 we have anomalous transport of heat and thus

C|k3 6=0 6= 0. (16)

In Fig. 4, we present the results of C|k3 6=0 as a function of k3.
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FIG. 4. Average of the Cv(i; δ) for all pairs and distances vs size of the chain. The blue line

grows as N0.54.

APPENDIX: CORRELATION LENGTH BEHAVIOUR

In condensed matter physics, the coincidence in the maxima of the cumulants hints at

the existence of a phase transition. Moreover, the emergence of critical behaviour in a

system is also characterised by the arising of an infinite correlation length, ξ, characterising

the two-point correlation function that goes as

Cu(δ) ∝ exp [−δ/ξ] . (17)

At the plateau, all the bulk particles have the same canonical temperature, hence we have

a totally correlated local temperature that could be seen as a sort of “ordered state of the

system”. That said, it is possible to check whether we have a critical-like mechanism by

computing the two-point correlation function of the square velocity, Cv2(δ), for different

values of k′ and assess if close to the first threshold we have,

ξ ∝ |∆k′|−ν± . (18)

where ∆k′ = k′ − k′crit1 .
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In order to probe Eq. (18), we fitted Eq. (17) in a log-linear scale for which the slope

would be equal to ξ−1. Then, when we pick the correlation length and plot it against ∆k′

in a log-log scale we cannot discern a standard critical phenomena power-law; as a matter

of fact, we find a quite likely linear dependence (R2 = 0.99999998 and p− value = 10−67)

implying a finite value of ξ for k′crit1 . The smooth change of ξ lead us to reject the

hypothesis of a phase transition scenario.
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FIG. 5. Correlation length as a function of ∆k′. The parameters are the following: m = k1 =

γ = 1, k = 1
2 , TC = 1 and TH = 2. The points are obtained from the analytical method and

the line corresponds to a linear fit with a slope equal to −0.61576± 1.9× 10−5, ordinate at the

origin ξ∗ = 0.779796± 1.1× 10−8 and R2 = 0.99999998.
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