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Abstract

Positive energy ray representations of the Poincaré group are naturally subdivided into three
classes according to their mass and spin content: m>0, m=0 finite helicity and m=0 infinite helicity.
For a long time the localization properties of the massless infinite spin class remained unknown before
it became clear that such matter does not permit compact spactime localization and its generating
covariant fields are localized on semi-infinite spacelike strings.

It is shown that such matter cannot interact with normal matter within the conceptual setting of
QFT since any such coupling leads to a total delocalization in higher perturbative orders. However,
as any positive energy matter, it interacts with gravity. Its inert behavior with respect to ordinary
matter makes it an ideal candidate for dark matter.

1 Wigner’s infinite spin representation and string-localization

Wigner’s famous 1939 theory of unitary representations of the Poincaré group P was the first systematic
and successful attempt to classify relativistic particles according to the intrinsic principles of relativistic
quantum theory [1]. As we know nowadays, his massive and massless spin/helicity class of positive energy
ray representations of P does not only cover all known particles, but their ”covariantization” [2] leads also
to a complete description of all covariant point-local free fields. For each representation there exists a
field of lowest short distance dimension; all other ”elementary” fields are obtained by applying derivatives,
and by forming Wick-ordered products of elementary fields one arrives at the ”local equivalence class” of
composite fields.

The only presently known way to describe interactions in four-dimensional Minkowski space is to start
from a scalar interaction density in terms of Wick-products of free fields with the lowest short distance
dimension and use it as the starting point of the cutoff- and regularization-free causal perturbation theory
[3]. These free fields do not have to be Euler-Lagrange fields; perturbative QFT can be fully accounted
for in terms of interaction densities defined in terms of free fields obtained from Wigner’s representation
theory without referring to any classical parallelism.
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All positive energy representations are ”induced” from irreducible representations of the ”little group”.
This subgroup of the Lorentz group is the stability group of a conveniently chosen reference momentum
on the forward mass shell H+, respectively the forward surface of the light coneV+. For m > 0 this is a
rotation subgroup of the Lorentz group and for m = 0 the noncompact Euclidean subgroup E(2). Whereas
the massive representation class (m > 0, s = n

2
), of particles with mass m and spin s covers all known

massive particles (the first Wigner class), the massless representations split into two quite different classes.
For the finite helicity representations the E(2) subgroup of Lorentz-”translations” are trivially repre-

sented (”degenerate” representations), so that only the abelian rotation subgroup U(1) ⊂ E(2) remains;
this accounts for the semi-integer helicity ± |h| , |h| = n

2
(the second Wigner class). The third Wigner class

consists of faithful unitary representations of E(2). Being a noncompact group, they are necessarily infinite
dimensional and their irreducible components are characterized in terms of a continuous Pauli-Lubanski
invariant κ.

Since the Pauli-Lubanski invariant for massive representations is related to the spin as κ2 = m2s(s+1)
one may at first think that the properties of this infinite spin matter can be studied by considering it as a
limit m→ 0, s→∞ with κ fixed. However it turns out that (m, s) spinorial fields do not possess such an
infinite spin limit. Our main result concerning the impossibility of quantum field theoretical interactions
between WS with normal matter depends among other things on the impossibility of such an approximation;
for this reason we will refer to these representations briefly as the ”Wigner stuff” (WS). This terminology
is also intended to highlight some of the mystery which surrounded this class for the more than 6 decades
after its discovery and which also the present paper does not fully remove.

For a long time the WS representation class did not reveal its quantum field theoretic localization
properties. The standard group theoretical covariantization method to construct intertwiners [2], which
convert Wigner’s unitary representations into point-like covariant wave functions and their associated
quantum fields, did not work for the WS representations. Hence it is not surprising that attempts in [4]
(and more recently in [5]), which aim at the construction of wave equations and Lagrangians, fell short of
solving the issue of localization. In fact an important theorem [6] dating back to the 70s showed that it is
not possible to associate pointlike Wightman fields with these representations.

Using the concept of modular localization, Brunetti, Guido and Longo showed that WS representa-
tions permit to construct subspaces which are ”modular localized” in arbitrary narrow spacelike cones [7]
whose core is a semi-infinite string. In subsequent work [8] [9] such generating string-local covariant fields
were explicitly constructed in terms of modular localization concepts. In the same paper attempts were
undertaken to show that such string-local fields cannot have point-local composites. These considerations
were strengthened in [10]. A rigorous proof which excludes the possibility of finding compact localized
subalgebras (generating point-local fields) was finally presented in an seminal paper by Longo, Morinelli
and Rehren [11].

Being a positive energy representation, WS shares its stability property and its ability to couple to
gravity with the other two positive energy classes; hence it cannot be dismissed from the outset as be-
ing unphysical. In view of the unsolved problems concerning the relation of the increasing amount of
unexplained astrophysical data concerning the still mysterious dark matter, it is tempting to explore the
possibility of a connection between this (according to some physicist) ”biggest enigma of the 21st century”
and the theoretical puzzle of the WS class. This re-opens a problem which Weinberg temporarily closed
in the first volume of his textbook by stating that ”nature does not use the WS representations” [2].

The aim of the present paper is to convert the question of whether nature uses WS matter into
a theoretical problem of understanding its largely unexplored properties. Such a theoretical question is
meaningful because QFT (in contrast to quantum mechanics) is fundamental in the sense that the wealth of
its physical consequences can be traced back to different manifestations of its underlying causal localization
principle.
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In the context of quantum theory this principle is much more powerful than its classical counterpart.
The concept of modular localization permits to address structural problems of QFT in a completely intrinsic
way which avoids the use of ”field-coordinatizations”. An illustration of the power of this relatively new
concept is the proof of existence of a certain class of two-dimensional models starting from the observations
that certain algebraic structures in integrable d=1+1 models can be used to construct modular localized
wedge algebras [12]. In the work of Lechner and others this led to existence proofs for integrable models
with nontrivial short distance behavior together with a wealth of new concepts (see the recent review [13]
and literature cited therein). Even in renormalized perturbation theory modular localization has become
useful in attempts to replace local gauge theory in Krein space by string-local fields in Hilbert space [14].

In [7] it was essential to extract localization properties directly in the form of modular localized sub-
spaces since Weinberg’s group theoretic method of constructing covariant local field within the standard
intertwiner formalism does not work for WS.

In an unpublished previous note [15] I tried to address the problem of a possible connection between
WS and dark matter. But the recent gain of knowledge from modular localization with respect to attempts
to unite WS with normal matter under the conceptual roof of AQFT in [11], as well as new insights coming
from perturbative studies of couplings involving string-local fields [14] [16], led to a revision of previous
ideas.

In [11] it was shown that the attempt to unite normal matter together with WS in a nontrivial way1

under the conceptual roof of AQFT leads to an unexpected (suspicious looking) loss of the so-called
”Reeh-Schlieder property” for compact localized observable algebra. The R-S property states that the
set of state vectors obtained by the application of operators from a compact localized subalgebra of local
observables to the vacuum is ”total” in the vacuum Hilbert space. The possibility to manipulate large
distance properties of states in the vacuum sector by applying operators localized in a compact spacetime
region O is considered to be a universal manifestation of vacuum polarization.

It plays an important role in the DHR superselection theory [17] and its breakdown in the presence
of WS asks for further clarification. It turns out that, different from point-local interactions where the
power-counting requirement dintsd ≤ 4 for renormalizability is the only requirement for the perturbative
existence of a model, string-local interactions must fulfill an additional quite restrictive condition which
prevents their total delocalization in higher orders.

The main result of the present paper is that this additional condition cannot be fulfilled in couplings
of WS to normal matter. The reason is that in contrast to massless finite helicity matter which can be
obtained as a massless limit from string-local massive matter, the class of WS remains completely isolated;
in particular it is not simply the m → 0, s → ∞ limit of string-local covariant spin s fields with fixed
Pauli-Lubanski invariant κ2 = m2s(s+ 1).

This leaves only the possibility that, apart from interactions with gravity as a consequence of the
positive energy property, WS cannot interact with normal matter. In mathematical terminology: normal
matter tensor-factorizes with WS and the Reeh-Schlieder property is that of a compact localized observable
subalgebra in the tensor factor of normal matter.

A world in which the WS matter only reacts with gravity may be hard to accept from a philosophical
viewpoint. But after we have gotten used to chargeless leptons which only couple to the rest of the world
via weak and gravitational interactions, the step to envisage a form of only gravitationally interacting kind
of matter is not as weird as it looks at first sight; in particular when astrophysical observations reveal
that on the one hand the presence of a new form of matter is indispensable for attaining a gravitational
balance in agreement with galactic observations, but at the same time require a high degree of reactive
inertia (”dark”) with respect to ordinary matter.

1Excluding the trivial possibility of a tensor product of WS with the world of ordinary matter.
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Apart from the fact that any positive energy matter couples to gravity, Wigner’s (m, s) classification
contains no information about possible interactions (strong, electromagnetic, weak). As will be argued in
the following, the noncompact localization properties permit however to support the idea that interactions
of WS with normal matter are not possible; ignoring gravitation, WS is inert. In contrast to the local
observables of noncompact string-like massless tensor potentials interacting among themselves or with
s < 1 matter, covariant string-local fields contain no local observables and hence the presence of string-
local states created by WS fields acting on the vacuum cannot be registered in particle counters. The
possible galactic presence of WS is restricted to pure gravitational manifestations.

The paper is organized as follows.
The next section presents a ”crash course” on Wigner’s theory of positive energy representations of

the Poincaré group including the explicit construction of string-local WS free fields and their two-point
functions.

The third section highlights an important restriction on renormalizable couplings involving string-local
fields.

In section 4 it is explained why this perturbative restriction can not be fulfilled for WS.
The concluding remarks point at problems arising from the identification of WS with dark matter.

2 Matter as we (think we) know it and Wigner’s infinite spin

”stuff”

The possible physical manifestations of WS matter can only be understood in comparison to normal
matter. Hence before addressing its peculiarities it is necessary to recall the localization properties of free
massive and finite helicity zero mass fields.

It is well known that all point-local massive free fields can be described in terms of matrix-valued
functions u(p) which intertwine between the creation/annihilation operators of Wigner particles [2]. Their
associated covariant fields are of the form

ψA,Ḃ(x) =
1

(2π)3/2

∫
(eipxuA,Ḃ(p) · a∗(p) + e−ipxvA,Ḃ(p) · b(p))d

3p

2p0
(1)

The intertwiners u(p) and their charge-conjugate counterpart v(p) are rectangular (2A+1)(2B+1)⊗(2s+1)
matrices which intertwine between the unitary (2s+1)-component Wigner representation and the covariant
(2A+ 1)(2B+ 1) dimensional spinorial representation labeled by the semi-integer A, Ḃ which characterize
the finite dimensional representations of the covering of the Lorentz group SL(2, c). the a#(p), b#(p) refer
to the Wigner particle and antiparticle creation/annihilation operators and the dot denotes the scalar
product in the 2s+ 1 dimensional spin space.

For a given physical spin s there are infinitely many spinorial representation-indices of the homogeneous
Lorentz group; their range is restricted by∣∣∣A− Ḃ∣∣∣ ≤ s ≤ A+ Ḃ, m > 0 (2)

For explanatory simplicity we restrict our subsequent presentation to integer spin s; for half-integer spin
there are similar results.

All fields associated with integer spin s representation can be written in terms of derivatives acting
on symmetric tensor fields (A = B) of degree s with lowest short distance dimension dssd = s + 1. For
s = 1 one obtains the divergence-less Proca vector potential APµ with dsd = 2, whereas for s = 2 the result
is a divergence-free traceless symmetric tensor gµν with dsd = 3 etc.
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Free fields can also be characterized in terms of their two-point functions whose Fourier transformation
are tensors in momenta instead of intertwiners. For s = 1 on obtains〈

AP (x)AP (x′)
〉

=
1

(2π)3

∫
e−ip(x−x

′)MP
µν(p)

d3p

2p0
, MP

µν(p) = −gµν +
pµpν
m2

(3)

and for higher spin the M ′s are symmetric tensors formed from products of gµν and products of p′s (P
stands interchangeably for ”Proca” or ”point-like”)

For m = 0 and finite integer helicity h the two dimensional ± |h| helicity representation replaces the
2s + 1 component spin. Despite this difference, the covariant fields turn out to be of the same form (1),
except that (2) is now replaced by the more restrictive relation∣∣∣A− Ḃ∣∣∣ = |h| , m = 0 (4)

which excludes all the previous tensor potential but permits field strengths which are tensors of degree 2 |h|
and dsd = |h|+ 1 with mixed symmetry properties. This is well-know in case of |h| = 1 where there exist
no massless point-local vector potential A = 1/2 = Ḃ associated to the electromagnetic field strength.
The absence of point-local tensor potentials in (4) results from a clash between point-local spin s tensor
potentials and the Hilbert space positivity. Gauge theory substitutes the non-existent point-local Hilbert
space vector potential by one in an indefinite Krein space and the prescriptions by which one extracts a
physical subtheory lead to gauge theory.

The problem can be resolved in two ways; either one sacrifices positivity or one let the Hilbert space
positivity determine the tightest localization consistent with positivity, which turns out to be localization
on semi-infinite space-like strings x + R+e, e

2 = −12. The first case only leads to a physically restricted
theory for which all gauge dependent fields are physically void. The advantage is only computational since
massless fields are easier to cope with (however the explicit extraction of the physical data with the help
of the BRST ghost formalism remains somewhat involved). The perturbation theory of string-local fields
turns out to be more demanding, but as a reward one obtains a full QFT in which (as in s < 1 interactions)
all fields are physical (though only few represent local observables).

String-local tensor potentials also exist for massive fields. The string-local counterpart of the point-local
massive two-point functions (3) turn out to be

M s
µν(p; e.e

′) = −gµν −
pµpνe · e′

(p · e− iε)(p · e′ + iε)
+

pµeν
p · e− iε

+
pνe
′
µ

p · e′ + iε
(5)

Its massless limit is of the same form, except that the momentum p is on the boundary of the positive
lightlike surface H+

0 of the forward light cone H+
m; This has to be taken into account in the Fourier

transformation to x-space. The more complicated form as compared to the −gµν in the Feynman gauge
setting is the prize to pay for upholding positivity. The best description of the interacting massless theory
is to first calculate the renormalized massive correlation functions and then take their massless limit. This
has the advantage of performing perturbation theory in the simple Wigner Fock particle space and leaving
the reconstruction of the massless limit (in which this physical description of the Hilbert space is lost) to
the application of Wightman’s reconstruction theorem to the limiting correlation functions.

Massive theories are simpler from a conceptual viewpoint because the presence of a mass gap permit
to use the tools of scattering theory and the identification of the Hilbert space with a Wigner Fock space.

2Beware that there is no relation between string-local fields and string theory. Whereas the change from point-local to
string-local fields for s ≥ 1 is required in order to uphold Hilbert space positivity, ST has no conceptual compass, it is the
result of a playful spirit to extend the game of QFT and has no relation to its modular localization.
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Whereas it is plausible that the asymptotic short distance behavior of the Hilbert space setting is correctly
accounted for in terms of the asymptotic freedom properties of gauge theories, the problems related to
long-distance properties as confinement remain outside the physical range of the gauge setting.

There is a very efficient way to derive the relation between the point-local Proca potential and its
string-local counterpart. Integrating the latter along the space-like direction e, one obtains a string-local
scalar field φ(x, e)

φ(x, e) :=

∫ ∞
0

dλeµAPµ (x+ λe) =
1

(2π)3/2

∫
(eipxu(p, e) · a(p) + h.c.)

d3p

2p0
(6)

u(p, e) := u(p) · e 1

ip · e
, Mφ,φ =

1

m2
− e · e′

(p · e− iε) (p · e+ iε)

where the inner product in the first line refers to the 3-dim. spin space and the denominator is simply
the Fourier transform of the Heavyside function. The φ two-point function can either be computed from
carrying out the line integrals on the Proca two-point function or by using the intertwiner. The string-local
vector is defined as

Aµ(x, e) :=

∫ ∞
0

eνFµν(x+ λe)ds, Fµν := ∂µA
P
ν − ∂νAPµ (7)

which leads to the two-point function (5).
The three fields turn out to be linearly related

Aµ(x, e) = Apµ(x) + ∂µφ(x, e) (8)

which either can be derived from the previous definition or by defining the three fields in terms of their
intertwiners in which case one obtains the relation as a linear relation between intertwiners. The equa-
tion looks like a gauge transformation; indeed the extension of this relation to interactions with matter
fields suggests a relation between point-local ψ(x) and is string-local counterpart which has the expected
exponential form ψ(x, e) = ψ(x) expφ. But in contrast to gauge theory these relations intertwine between
string-local fields and their more singular point-local siblings in the same string-local relative localization
class; in fact this formula, after making it precise in terms of normal products may be seen as the definition
of an e-independent dsd =∞ counterpart of a polynomially bounded string-local field.

This construction can be extended to all integer spin fields. The divergence-free Proca potential is
replaced by divergence- and trace-free symmetric tensor potentials Aµ1,...µs of tensor rank s. Iterated
integration along a space-like direction e leads to s string-local φ tensor fields of lower rank

φµ1..µk(x, e) =

∫
dλ1..dλs−ke

ν1 ..eνs−kAν1,...νs−k,µ1,...µk(x+ λ1e+ ..λs−ke) (9)

Again one can construct the e- dependent intertwiners from these relations. The extension of (8) spin
s relates the point-local tensor-potential AP to its string-local counterpart and s string-local tensor
escorts φ...(x, e) of A.

Aµ1 , ..µs(x, e) = APµ1 , ..µs(x) +
s∑

k=1

∂µ1,..∂µkφµk+1,..µs (10)

The appearance of these lower spin φ-escorts is characteristic for the change of massive point-local fields
into their string-local siblings acting in a Hilbert space. They are important new fields which depend on
the same degrees of freedom (the Wigner creation/annihilation operators) as the other two operators. For
s = 1 the scalar field φ may be seen as the QFT analog of the bosonic Cooper pairs which are the result
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of a reorganization of the condensed matter degrees of freedom in superconductivity3 which appear at low
temperature. Without the formation of Cooper pairs from existing condensed matter degrees of freedom it
is not possible to convert the long-range classical vector potentials into its short range counterparts within
the superconductor (as anticipated by London). The relation between long range massless and short range
massive potentials requires the presence of the φ in fact it is not possible to formulate massive QED in
Hilbert space (i.e. in terms of string-local potentials) without the presence of these escorts (no need of
additional H fields for massive vector potentials).

The reason why additional degrees of freedom in the form of H-fields are indispensable in the case of
self-interacting massive vectormesons is quite deep but bears no relation to physical spontaneous symmetry
breaking, for details we refer to even though the formal prescriptions in terms of Mexican hat potentials
lead to the same result as the induction of H-self-interactions by requiring the e-independence of the S-
matrix. The presence of H fields is necessary in order to preserve the second order power-counting bound
through a compensation mechanism [14] [16].

The individual lower spin escort fields in (10) have no massless limit, but together with the Proca tensor
potentials their presence is necessary for the construction of the massive string-local potential; all these
fields are relatively local and act in the same Wigner-Fock Hilbert space. Only the correlation functions
of the degree s string-local tensor potential possess a massless limit.

The A in (10) is related to the point-local field strength

Fµ1..µs,ν1..νs = as
µ,ν
{∂µ1 ..∂µsAν1,..νs} (11)

where the antisymmetrization imposes antisymmetry between the µ − ν pairs. As in the previous case
of the vector potential (7), the string-local tensor potentials with fulfill (10) can be obtained in terms of
s iterated integrations along e starting from the field strength. The field strength tensor is the lowest rank
tensor field4. With appropriate changes these results have analogs for semi-integral spin.

Before passing to the string-local fields of the WS class it may be helpful to collect those properties
which turn out to be important for a comparison with finite spin string-local fields.

• Whereas pointlike massive tensor potentials have short distance dimension dsd = s+ 1, their string-
local counterparts have dsd = 1 independent of spin. Hence there are always first order string-local
interaction densities within the power-counting limit dintsd ≤ 4

• String-local tensor potentials are smooth m → 0 limits of their massive counterpart. They inherit
the dsd = 1 from their massive counterpart. The lowest point-local fields in the same representation
class are dsd = 2s field strengths (tensors of rank 2s with mixed symmetry properties).

• The point-local dKsd = 1 zero mass vector-potentials AKµ of local gauge theory act in an indefinite
metric Krein space. The physical prize for resolving the clash between point-like localization and
Hilbert space positivity is the scarification of the Hilbert space. The physical range of s = 1 gauge
theory is restricted to local observables which act in a smaller Hilbert space which does not include
fields. The latter contain no information about the physical relation between Hilbert space positivity
and Einstein-causal physical localization. The absence of local observables excludes the use of gauge
theory for WS.

3This remark is intended to counteract the claim that one needs addional H-fields in order to ”fatten vector potentials by
swallowing Goldstone particles”. The physical reason why H ′s are needed in the presence of self-interacting massive vector
mesons is quite different (see below).

4For s = 2 this tensor has the same mixed symmetry property as the linearized Riemann tensor whereas the symmetric
second rank tensor deserves to be denoted as gµν .
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Whereas the two-point functions of point-local massive free fields are polynomial in p, their string-local
counterparts have a rational p-dependence (5) (6). The family of all WS interwiners for a given Pauli-
Lubanski invariant κ has been computed in [8] their two point-functions are transcendental functions of
p, e which are boundary values of from Im(e) ∈ V +.

A particular simple WS intertwiner with optimal small and large momentum space behavior (corre-
sponding to the minimal choice for string-local massless s ≥ 1) has been given in terms of an exponential
function in [10]

u(p, e)(k) = expi
~k(~e− p−

e−
~p)− κ

p · e
(12)

here k is a two-component vector of length κ; the Hilbert space on which Wigner’s little group E(2) acts
consists of square integrable functions L2(k, dµ(k) = δ(k2 − κ2)dk) on a circle of radius κ. The vectors
arrow on e and p refer to the projection into the 1-2 plane and the and e−, p− refer to the difference
between the third and zeroth component. The most general solution of the intertwiner relation differs
from this special one by a function F (p · e) which is the boundary value of a function which is analytic in
the upper half-plane [8].

The two-point function is clearly a J0 Bessel function. The calculation in [10] was done in a special
system. Writing its argument in a covariant form one obtains 5

MWS(p, e) ∼ J0(κ |w(p, e)|)exp− iκ(
1

p · e− iε
− 1

p · e′ + iε
) (13)

with w2(p, e) = −(
e

e · p− iε
− e′

e′ · p+ iε
)2

The exponential factor compensates the singularity of J0 at e·p = 0. Note that the Pauli-Lubanski invariant
κ has the dimension of a mass so that the argument of the two-point function of the string-local field has
the correct engineering dimension deng = 1 of a quantum field.

The main purpose of this calculation is to convince the reader that there exist explicitly known tran-
scendental WS intertwiner and two-point functions whose associated propagators with a well behaved
ultraviolet and infrared behavior. As already mentioned, the physical reason why these fields are excluded
from appearing in interaction densities is that the higher orders lead to a complete de-localization in
higher; the necassary condition which they violate will be explained in the next section.

3 The problem of maintaining higher order string-localization

It is well known that the only restriction for point-local interaction densities is the power-counting in-
equality dintsd ≤ 4. Since the minimal short distance dimension of point-local spin s fields6 is s + 1, there
are no point-local renormalizable interactions involving s ≥ 1 fields. String-local free fields on the other
hand have an s-independent short distance behavior with dsd = 1 so that one always can find polynomials
of maximal degree 4 which represent interaction densities within the power-counting limitation.

However such formally renormalizable string-local interaction densities come with a physical hitch.
Unless they fulfill an additional requirement, the string-localization cannot be maintained in higher orders.
In that case the result will be a complete delocalization. Before explaining why an interaction between
WS and ordinary matter is irreconcilable with the causal localization principles of QFT, it is helpful to
understand the condition for the preservation of string-localization in models with finite spin.

5I am indepted to Henning Rehren for showing me the covariantization of Köhler’s result.
6Fields (without the added specification ”gauge”) are always acting in Hilbert space.
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As a simple nontrivial illustration we start with a string-local interaction density L massive QED

L = Aµ(x, e)jµ(x) (14)

Here Aµ(x, e) is a massive string-local vector potential (5) and jµ is the conserved current of a massive
complex scalar field. These fields act in a Wigner-Fock Hilbert space of the corresponding Wigner particles
and since dsd(Aµ) = 1, dsd(j

µ) = 4 the short distance dimension of L, dLsd(L) = 4 stays within the power-
counting bound dintsd of renormalizability7.

If we now iterate this interaction according to Bogoliubov’s time-ordered operator formalism for the
calculation of either the on-shell S-matrix or the off-shell correlation functions, we find that the number
of e′s in inner propagators (every e in Aµ(x, e) fluctuates separately) increases and the integration of the
inner x′s over all spacetime leads to a spread of the strings x + R+e over all spacetime. The desired
situation of a directional independent S-matrix and off-shell correlations which only depend on the ei of
the correlated fields (and not on e′is of inner propagators) cannot be maintained.

The way to prevent total delocalization and secure the e-independence of the S-matrix is as follows.
One starts from the point-local interaction with dintsd = 5 and uses (8) to rewrite it as

LP = AP · j = L− ∂µVµ, Vµ(x, e) := ∂µφj
µ (15)∫

LPd4x =

∫
Ld4x, i.e. S(1) = S

(1)
P = S

(1)
S

where the second line follows since in the presence of a mass gap the divergence of Vµ does not contribute
to the adiabatic limit which represents the first order S-matrix. The gain is two-fold. On the one hand
we have expressed the S-matrix in terms of the renormalizable string-local interaction L by disposing the
most singular dsd(∂ ·V ) = 5 contribution at infinity (boundary terms do not contribute in massive models).
This implies that the first order S-matrix is e-independent.

For the following it is convenient to formulate the e-independence in terms of a differential form calculus
on the d = 1 + 2 dimensional directional de Sitter space. The differential form of the relation (8) reads

deAµ = ∂µu, u = deφ (16)

de(L− ∂µVµ) = deL− ∂µQµ, Qµ := deVµ

In order to secure the directional independence in higher orders we must implement the e-independence
in the following form (second order, for simplicity of notation):

d(TLL′ − ∂µTVµL′ − ∂µTLV ′µ + ∂µ∂νTVµV
′
ν) = 0, i.e. S(2) is e− independent (17)

(TLL′)P := TLL′ − ∂µTVµL′ − ∂µTLV ′µ + ∂µ∂νTVµV
′
ν , d := de + de′ (18)

It can be shown that this is automatically fulfilled in massive spinor QED, but in scalar massive QED this
turns into a normalization requirement which induces the second order A ·Aϕ∗ϕ term which is well-known
from gauge theory [14].

The ”magic” of L, Vµ pairs with (16) is that on the one hand they they permit to use the lower short
distance dimension of string-local fields and in this way lower the power-counting bound of renormalizabil-
ity, but they also guaranty the e-independence of the S-matrix since the derivative contributions in (18),
by which the point-local density (TLL′)P differ from their string-local counterpart, are disposed off in the
adiabatic limit

S(2) = S
(2)
S = S

(2)
P (19)

7Its point-local counterpart Aµ → APµ has dsd(L
P ) = 5 and hence nonrenormalizable. Note that unless specifically stated

all our fields act in a Hilbert space.
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The extension of this observation to the construction of time-ordered correlation functions of string-
local interacting fields leads to their independence from inner e′s i.e. from string directions of inner
propagators8. A string-local interaction density can only maintain higher order string-localization if it is
the L of a L, Vµ pair.

Since the integration over inner x′s of strings x+R+e would lead to a total delocalization; the gain in
renormalizability by replacing LP by L would be worthless since such an ansatz does not qualify as a model
of QFT. As the BRST gauge invariance of the S-matrix sS = 0 is not a property of a single contribution
but rather that of a sum of many, the e-independence results from on-shell cancellations between different
contributions in the same order. The L, Vµ (or L,Qµ) pair property (16) is a necessary condition for this
to happen; it permits to sail between Scilla of nonrenormalizability and Charybdis of total delocalization.
The main point of the present work will be that such a path is not possible in the presence of WS fields
in L.

There is another important physical aspect of the L, Vµ pair. In contrast to the gauge formalism, the
scalar φ is not a nuisance of the formalism (as the Stückelberg φK and the ghosts). It is a physical field of
the Hilbert space formulation and as such an indispensable object of massive QED (as the abelian Higgs
model not realized in nature). This is reminiscent of the presence of the bosonic Cooper pairs in the BCS
description of superconductivity; without their presence it is not possible to obtain the short ranged vector
potentials in London’s first phenomenological argument. They are not additional degrees of freedom but
result from rearrangements of existing condensed matter degrees of freedom at low temperature.

Before we address the problem of WS matter, it is instructive to look at a slightly more involved
situation in which the string-local φ-escort of Aµ already enters the model-defining first order interaction
density. Such an example is provided by an interaction of Aµ with a Hermitian (instead of complex)
scalar field H. As known from point-local interaction it is sufficient to specify the field content of a
model (which includes the masses of the participating free fields). Starting with a particular interaction
density of lowest short distance dimension, the model completes itself by generating additional local
renormalization counterterms with new coupling parameters (in case of string-local free fields also induced
terms as A · Aϕ∗ϕ without new couplings) so that the result is independent on the starting interaction
density and only depends on the field content and imposed inner symmetries.

For an 6 A,H field content the point-local interaction with the lowest short distance dimension is
LP = mAP · APH. Writing it in the form of a string-local L, Vµ pair one obtains:

L = m

{
A · (AH + φ

←→
∂ H)− m2

H

2
φ2H

}
, Vµ = m

{
AµφH +

1

2
φ2←→∂ µH

}
(20)

L− ∂V = LP = mAP · APH, d(L− ∂V ) = 0

In this case the on-shell e-independence requirement (17) of the tree contribution to second and third
leads to a much richer collection of induced terms than in the case of scalar massive QED. Whereas in the
latter case the e-independence of the second order S-matrix induces only the A ·Aϕ∗ϕ term, the induction
in case of an interaction A · AH with a Hermitian field interaction leads to H4, φ4, H2φ2 terms which, if
combined together, take the form of an induced (not postulated) Mexican hat potential [14].

The resulting model is the abelian Higgs model. Usually this model is not derived from BRST gauge
invariance of the S-matrix sS = 0 [20] or the d(L − ∂V ) = 0 condition for a L, Vµ pair, but rather from
imposing an off-shell gauge breaking prescription (the Higgs mechanism). These are different prescriptions
which lead to the same second order result result, but the correct physical interpretation is the one based
on the e-independence of the S-matrix since this follows directly from the physical principles; the broken
Mexican hat potential has not to be postulated but is a consequence of the Hilbert space formulation of

8This will be the subject of forthcoming work by Jens Mund.
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causal localization principles. In a theory where all fields in the interaction density become string-local
there is also no symmetry which can be spontaneously broken.

Important is not the recipe by which one obtained one model from another but the intrinsic physical
properties and they show that the Higgs model of an interaction of a massive vector meson interacting with
a Hermitian field is the screened charge Q = 0 of the identically conserved Maxwell current jµ = ∂νFµν
of a massive vector meson [14] and not the conserved current of a SSB (∂µjµ = 0 and Q =

∫
j0 = ∞ is

the definition of SSB). To obtain a lesser known model (the interaction of a massive vector potential with
a Hermitian scalar field) from a better known one (scalar QED) by a simple trick (adding a Mexican hat
potential + an adjusting shift in field space) as long as one does not confuse such a recipe with a physical
property of the resulting A-H interaction.

QFT is certainly a fundamental theory, but it contains no information about the origin of masses of
those particles which are associated to the ”elementary” fields in terms of which one defines a model9.
The first order string-local interaction density may however lead to induced couplings which relate mass
ratios to coupling strengths.

The vector mesons of massive QED does not need the coupling to H ′s, but massive QCD, or merely self-
interacting massive Y-M fields, requires their presence. The L, Vµ pairs setting for such models satisfies the
condition of e-independence. But now there is a new phenomenon which was absent in massive QED: self-
interacting massive vector mesons lead to a second order induced interaction with a dintsd = 5 contribution.
This is presently the only known QFT model for which the first order power-counting bound does not prevent
a second order violation. The solution within the L, Vµ setting is to enlarge the model by a coupling to an
additional field which leads to second order compensations of renormalizability-violating terms.

Hence the nonabelian massive vector mesons which improved the short distance behavior of the 4-
Fermi coupling by transmitting the forces between the fermions did not, as originally expected, maintain
renormalizability in second order. The solution was to compensate the renormalization-violating dsd = 5
second order contribution by a similar contribution from an added first order nonabelian A -H interaction
with an additional Hermitian H field. Fortunately its second order iteration, different from its abelian
counterpart, contains a dsd = 5 contribution which cancels the incriminated contribution from the second
order self-interaction. The upholding of renormalization and the avoidance of higher order complete
delocalization attributes a fundamental property to the H particle in particular since this compensation
can only be achieved by a Hermitian scalar field and the A-H coupling turns out to be unique in case of
only one H [16]. Deriving the total interaction via the SSB prescription would overlook the compensation
mechanism.

The guiding idea of higher order compensations between contributions from different spins is reminis-
cent of how one pictures short distance compensations between different spin contributions in supersym-
metric models. The difference is that in the present case the short distance improvements are the raison
d’être for such an extension, whereas SUSY was originally invented for other reasons.

The L, Vµ mechanism to preserve higher order renormalization and string-localization (avoidance of
higher order total delocalization) may have interesting extensions to higher spins. In that case the short
distance dimensions of the operators L remains at dintsd ≤ 4 but the dimensions of the Vµ in (16) will
be dsd(Vµ) > 5. What one needs are contribution from couplings to fields of lower spin fields with lead
to renormalizability-preserving compensations in higher orders. The simplest model realization for such
an idea would start from s = 2 gµν-potentials interacting with lower s = 1 and s = 0 potentials. The
string-local setting is still in its infancy, and the previous s = 1 example of a compensation shows that
such constructions are not easy.

9Lattice model calculations suggest that masses associated to composite fields (bound state) are determined in terms of
those of the fundamental fields and their couplings.
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We now return to the main problem of the present work: interactions involving zero mass string-
local fields. In the presence of a mass gap and asymptotic completeness10 the conceptual situation is
characteristic for particle theory: the quantum fields act in a Wigner-Fock Hilbert space of particles. The
main problem is to construct L, Vµ pairs in terms of massive s > 1 tensor potentials and to study the
massless limit of the correlation functions.

The breakdown of the particle structure of the Hilbert space and of the S-matrix is intimately re-
lated to the appearance of infrared problems whose spacetime interpretation is one of the still unsettled
conceptual problems of QFT. In order to avoid misunderstandings, there are very successful momentum
space description for photon-inclusive cross sections of collision of charge-carrying particles which replace
the non-existing S-matrix. But there are no general arguments why these cross sections remain gauge
invariant (only shown in low orders) in the absence of a gauge invariant S-matrix, nor is there a spacetime
understanding in what way logarithmic on-shell infrared divergencies are related to the vanishing of the
LSZ scattering limit for charge-carrying particles (the ”softening” of mass-shell delta functions [32]).

The present string-local setting places the infrared problems of interacting massless vector potentials
into a new light. It shows that these problems are not the result of shortcomings of the chosen formalism
but rather reflect a profound conceptual change. The perturbative L, V operator formalism in Wigner-
Fock space breaks down (the V diverges in the massless limit) and the only objects which can be expected
to have a smooth massless limit are the positivity preserving vacuum expectation values of string-local
fields. According to Wightman’s reconstruction theorem they suffice to reconstruct operators acting in
a new Hilbert space which is not a Wigner Fock space. There is no perturbative QFT formalism which
permits to construct QED directly; in this respect the gauge theoretic description which through its point-
local gauge dependent matter fields simulates a zero mass particle structure in Krein space which has no
counterpart in the physical Hilbert space.

Actually the picture from gauge theory may be asymptotically correct for short distances i.e. the beta
function of the Callan-Symanzik equation of the gauge formulation in Krein space may be the same as
that in the SLFT Hilbert space description, assuming that a string-local formulation has an associated
e-independent Callan-Symanzik equation. The correct counterparts to the long range Coulomb potentials
in quantum mechanics are the zero mass limits of string-local charge-carrying fields.

4 Impossibility of perturbative interactions of infinite spin mat-

ter

In the previous section we posed the problem of perturbative interactions of higher spin s > 1 fields.
The conclusion was that in this case the the construction of first order interaction string-local interaction
densities within dintsd ≤ 1 by itself is not a problem; but unless they are part of an e-independent L, V pair
obeying de(L − ∂V ) = 0 they do not lead to a physical S-matrix and string-local correlation functions.
In both cases there can be no dependence on inner e′s (the e′s of the propagators over whose x′s one
integrates) and the L, V pair requirement together with the power-counting bound for L is a necessary
condition for such an inner e-compensations between different contributions to a perturbative order11.

It may happen that the second order e-independence cannot be fulfilled without extending the model.
As explained in the previous section this does not occur for massive spinor or scalar QED nor for the linear
coupling of a massive vector meson to a Hermitian field (the abelian Higgs model) but it does happen

10In a perturbative setting asymptotic completeness is fulfilled since the Hilbert space is the Wigner-Fock space of the
elemenrary free fields.

11This is similar to gauge invariance except that gauge invariance does not provide a point-local analog of physical string-
dependent fields.
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for massive QCD and just self-interacting massive vector mesons where a second order induced dsd = 5
coupling appears. As explained this situation can only be saved by including a compensating nonabelian
A-H coupling. So the power-counting bound is preserved and string-localization is maintained. This
compensation mechanism is the theoretical basis for the perturbative consistency of the standard model.

For higher spins s ≥ 2 the prize for maintaining the power-counting bound for L is that Vµ carries the
high dimension dsd(Vµ) = 4 + (s− 1) which leads to induced second order power-counting violating terms.
Again only an extension by couplings to lower spin fields and the hope for compensations can save the
situation. Whether there are such higher spin cases will remain a problem for future investigations.

WS spin fields constitute an isolated class of massless string-local fields. Unlike the construction of
massless free string-local tensor potentials from massless limits of massive string-local correlation functions,
it is not possible to present string-local WS fields as a massless limit of covariant tensorial potentials for
m → 0 which is necessary for formulating a string-local renormalization theory. It is presently unclear
whether string-local transcendental intertwiners as (12) and their associated string-local fields can be
obtained as m → 0, s → ∞ limits with κ2 = m2s(s + 1). This intertwiner is a special case of the most
general string-local transcendental WS intertwiners in [8].

The transcendental two-point function (13) which corresponds to this intertwiner (12) is well-behaved
for short and long distance, so the problems of interactions do not arise from renormalizability-threatening
ultraviolet problems of free fields. Rather they originate from the breakdown of higher order string-
localization which leads to a total delocalization; such candidates do not define interacting models of
QFT.

Indeed any L of the form L = XΦ, where Φ is a WS field and X any product of standard free fields
with L within the power-counting bound will lead to higher order interactions with internal Φ-propagators
whose integration over internal x′s will spread the string-like localization x + R+e over all of spacetime.
The necessary prerequisite for avoiding such a spread, namely the is existence of a Vµ with de(L−∂V ) = 0
cannot be implemented i.e. WS cannot perturbatively interact with normal Wigner matter.

This is consistent with the structural result within the setting of algebraic QFT in [11]. There it was
shown that the presence of WS in the field algebra leads to an unexpected property of the observable
algebra of the combined model in case there is a nontrivial interaction of WS with normal matter. Namely
the Reeh-Schlieder property, an important characteristic of compactly localized observable algebras, is
necessarily violated. One way out is a tensor product between the WS and normal QFT matter (ignoring
the coupling of WS to classic gravity); this agrees with the negative outcome of our perturbative attempt.
Although WS reacts to gravitational forces, it remains inert (forms a tensor product) with respect to normal
matter.

The gravitational coupling of a point-local scalar field uses the conserved traceless tensor as a source
in the Einstein-Hilbert equation. The simplest conserved expression has the same form as for m = 0
point-local fields

Tµν = ∂µϕ∂νϕ−
1

2
gµν∂κϕ∂

κϕ (21)

The string-localization of the WS free field ϕ(x, e) does not affect the validity of the Klein-Gordon equation,
hence the tensor is conserved; however the corresponding candidates for the conserved charges are not the
generators of the Poincaré group12.

For the formal consistency as a conserved source of the Einstein-Hilbert equations the conservation
law suffices. There remains however the problem whether a conserved energy-momentum tensor whose
conserved global ”charges” are the generators of the Poincaré transformations exists. This is even a
problem of massive s ≥ 2 tensor potentials. The candidate for such an energy-momentum tensor would

12Free fields are known to admit infinitely many conservation laws.
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be the Wick-ordered product
Tµν ' as ∂µAλ1 ..λn∂νA

λ1..λn + gµνT (22)

where the string-local A-tensor (10) is symmetric and the antisymmetrization as refers to the µ respectively
ν with the symmetric λ tensor indices. The additional bilinear gµν contribution must be such that Tµν is
trace- and divergence-less.

If we were to use the point-local AP -tensor we would obtain an expression whose short distance dimen-
sion is (apart from the s = 1 case, where the expression coincides with the well-known energy-momentum
tensor in terms of the field strength Fµν), too large for an energy-momentum tensor with dsd = 4. However
for the string-local A-tensor in (22) the short distance dimension and the dimension in mass units coalesce.
Both tensors are different by derivatives of escort fields (10).

Only if the contribution of the escort fields drops out in the global limit of the would be Poincaré
charges, the string-local dsd = 4 energy-momentum tensor will be the correct one. For this one would
have to prove that the escort fields do not contribute to the large volume limit which represent the global
charges. Whereas they do not contribute to the adiabatic limit (the fundamental property for the existence
of renormalizable L, Vµ pairs), it is not obvious that the global charges will be e -independent. The large
volume limit of charges from conserved currents is a quite delicate issue [17].

An argument in favor of a local representation of the Poincaré group comes from modular localiza-
tion theory. As in point-local QFTs it is possible to construct unitary operators localized in a compact
spacetime region O which for sufficiently small transformation parameters implement the correct Poincaré
transformations on operators localized in a suitably chosen smaller region inside O ([17] chapter V), one
expects that in string-local QFTs one should have a corresponding situation for O replaced by a spacelike
cone C. The ”split property” for interacting fields on which these arguments are based certainly hold for
free fields.

Whether conserved string-local energy momentum tensors (22) with e-independent Poincaré charges
exist for s ≥ 2 is a question of great relevance. It is part of a general problem of constructing e-independent
charges from string-local currents of low short distance dimensions in higher spin QFT for which the point-
local basic free fields have high short distance dimensions dsd = s+ 1. This issue should be clarified before
one attempts to construct a WS energy-momentum tensor in terms of a limiting process m→ 0, s→∞
at fixed Pauli-Lubanski invariant κ. We hope to return to this problem in a future publication.

The principle reason for the inert behavior of WS with respect to normal matter is that the WS
representations is totally isolated from the other classes which cover the standard matter. There are
no massive string-local finite spin covariant tensor fields whose vacuum expectation values converge to
those of WS fields in the infinite spin limit at fixed Pauli-Lubanski invariant κ. Their remains another
conceptual problem with the coupling of WS to gravity. As a positive energy representation WS couples in
the classical sense of Einstein’s dictum that all positive energy representations couple to classical gravity.

A clarification of the issue of an infinite spin energy-momentum tensor would open the possibility to do
calculations within the setting of the Einstein-Hilbert equation. Further astrophysical observations may
reveal that the relation between WS and quantum aspects of gravity are much stronger than envisaged in
present ideas about the nature of s = 2 quantum gravity in which the infinite spin WS and gravity remain
separate states of massless matter.

5 Concluding remarks

As all positive energy matter, the Wigner stuff couples to gravity and for this reason enters the galactic
gravitational balance. This together with its inert behavior with respect to ordinary matter makes it an
interesting candidate for dark matter in the sense of astrophysical observations apart from the fact that
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as a factor in a tensor product with normal matter which is only bridged by classical gravity it may be a
bit ”too perfect”. Such world of dark quantum matter which does not communicate with normal quantum
matter may be hard to digest from a philosophical point of view, although (to the author) it appears less
bizarre than the proposal of multi-verses.

But there remain valid astrophysical objections and questions as: how did noncompact localized matter
get into our universe and what was its role in the formation of ordinary matter after the big bang? Here high
temperature phase transitions may have played a role in converting a high temperature compact localized
and more reactive form of infinite spin matter into its present noncompact inert vacuum representation.

Unlike other dark matter candidates (WIMPS,..), the Wigner stuff has not been invented to explain
dark matter; as a rather big class being characterized in terms of the continuous invariant κ, it made its
debut already in Wigner’s 1939 paper which was written in the same decade in which Zwicky discovered
dark matter from his analysis of galactic observations. What was missing for nearly seven decades was an
understanding of its unexpected causal localization properties on which the present ideas in this paper are
based.

Any laboratory observation of a new form of matter which can only be explained by identifying it with
the ubiquitous galactic dark matter will invalidate the present proposal. But even if this happens the
present work may not have been in vain since the identification of its intrinsic noncompact localization
[11] [8] WS led in turn to a better understanding of the important role of the interplay between Hilbert
space positivity and string-local causal localization properties of interacting quantum fields of higher spin
[8] [9] [14] [16].
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I am indebted to Christian Köhler for sending me a copy of his thesis before publication. Last not
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