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We present a current algebra for a generalized two-site Bose-Hubbard model and use it to get
the quantum dynamics of the currents. For different choices of the Hamiltonian parameters we get
different currents dynamics. We generalize the Heisenberg equation of motion to write the n-th time
derivative of any operator.
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Introduction - Since the first experimental verification
of the Bose-Einstein condensation (BEC) [1–3] occurred
more then seven decades after its theoretical prediction
[4, 5] a great deal of progress has been made in the theo-
retical and experimental study of this many body physi-
cal phenomenon [6–26]. Looking in this direction a laser
was used in an experiment to divide a BEC in two parts
to study the interference phenomenon between two BECs
[27, 28]. These two BECs can be coupled by Josephson
tunnelling [29–35] with the atoms tunnelling between the
condensates in the same way that a Cooper pair in a su-
perconductor Josephson junction. To study this system a
model, known as the canonical Josephson Hamiltonian,
was proposed by Leggett [8]. Since then many models
has been used to study the BECs such as the quantum
dynamics of tunnelling of atoms between the two conden-
sates, the entanglement, the quantum phase transitions,
the classical analysis, the atom-molecule interconversion
and the quantum metrology [36–47]. The algebraic Bethe
ansatz method has been used to solve and study some of
these models [48–59]. We are considering here a gener-
alized issue of the models [8, 52] by the introducing of
the on-well energies and leaving free choice for the inter-
action parameters. The on-well energies is determined
by the internal states of the atoms in the condensates
and/or by the kinetic (interaction) energy of the atoms
and/or the external potentials. The generalized model is
described by the Hamiltonian

Ĥ =
2∑

i,j=1

KijN̂iN̂j −
2∑

i=1

(µi − Ui)N̂i −
2∑

i6=j

Ωij â
†
i âj ,(1)

where, â†i (âi), denote the single-particle creation (an-

nihilation) operators in each well and, N̂i = â†i âi, are
the corresponding boson number operators in each con-
densate. The boson operator total number of particles,
N̂ = N̂1 + N̂2, is a conserved quantity, [Ĥ, N̂ ] = 0. The
couplings Kij , with Kij = Kji, provides the interaction
strength between the bosons and are proportional to the
s-wave scattering length, µi are the external potential,
Ωij = Ωji is the symmetric amplitude of tunnelling and
Ui are the on-well energy per particle.
For the particular choice of the couplings parameters

we can get some Hamiltonians, as for example by the
choices Kii = K

8
, K12 = −K

8
, ∆µ = µ1 − µ2 = 2µ,

Ui = 0, and Ω12 = EJ

2
we get the canonical Josephson

Hamiltonian studied in [8]. The case with K12 = K21 =
0, Kii = U/2, Ui = −U/2, ǫ = µ1−µ2 = 2µ, and Ω12 = t
was used to study the interplay between disorder and
interaction [43]. For the symmetric case we have ∆µ = 0
and when we turn on ∆µ we break the symmetry. For the
symmetric case we also can put µ1 = µ2 = µ and change
the deep of both wells at the same time. This mean that
we also can adjust the on-well energies using the external
potential in the symmetric case. In the antisymmetric
case ∆µ 6= 0 we can change the bias of one well and
increase the on-well energy. In this case it is called a
tilted two-well potential [40, 60].

Symmetries - In this section we will discus the sym-
metries of the Hamiltonian (1) in the same way that
we discus them in [61]. The on-well energies Ui 6= 0
don’t break the global U(1) gauge invariance neither the
discrete Z2 mirror invariances. The Hamiltonian (1)
is invariant under the Z2 mirror transformation âj →
−âj, â

†
j → −â†j, and under the global U(1) gauge trans-

formation âj → eiαâj , where α is an arbitrary c-number

and â†j → e−iαâ†j , j = 1, 2. For α = π we get again
the Z2 symmetry. The global U(1) gauge invariance is
associated with the conservation of the total number of
atoms N̂ = N̂1 + N̂2 and the Z2 symmetry is associated
with the parity of the wave function by the relation

P̂ |Ψ〉 = (−1)N |Ψ〉, (2)

|Ψ〉 =
N∑

n=0

Cn,N−n

(â†1)
n

√
n!

(â†2)
N−n

√
(N − n)!

|0, 0〉, (3)

where P̂ is the parity operator and [Ĥ, P̂ ] = 0.

There is also the permutation symmetry of the atoms
of the two wells if we have ∆µ = 0 and U1 = U2. When
we turn on ∆µ or put U1 6= U2 we break the symmetry.
The wave function (3) is symmetric under this permuta-
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tion

P̂ |Ψ〉 =
N∑

n=0

CN−n,n

(â†1)
N−n

√
(N − n)!

(â†2)
n

√
n!

|0, 0〉 = |Ψ〉, (4)

where P̂ is the permutation operator and [Ĥ, P̂ ] = 0 if
∆µ = 0 [51] and U1 = U2. In the Fig. 1 we represent
the two BEC by a two-well potential for the case ∆µ 6= 0
and U1 = U2.

FIG. 1. Two-well potential showing the tunnelling for U1 =
U2 and ∆µ 6= 0 with the height of the barrier Vb.

The symmetries of the Hamiltonian (1) imply degen-
eracy. For the conservancy of N̂ we have that all wave
function of the Hamiltonian (1) are degenerated eigen-
functions of N̂ with the same eigenvalue N . For the
parity operator P̂ all wave function of the Hamiltonian
(1) are even or odd depending if N is even or odd. All
wave functions are degenerated eigenfunctions of P̂ with
the same eigenvalue λ = +1 if N is even or they are de-
generated eigenfunctions of P̂ with the same eigenvalue
λ = −1 if N is odd. For the permutation operator P̂
all wave function of the Hamiltonian (1) are degenerated
eigenfunctions with the same eigenvalue λ = +1.

Current Algebra - The quantum dynamics of any op-
erator Ô in the Heisenberg picture is determined by the
Heisenberg equation of motion

dÔ

dt
=

i

~
[Ĥ, Ô]. (5)

The boson operator total number of particles, N̂ =
N̂1 + N̂2, is a conserved quantity, [Ĥ, N̂ ] = 0, and it
is commutable compatible operator (CCO) with the bo-
son operators number of particles in each well, [N̂ , N̂1] =
[N̂ , N̂2] = [N̂1, N̂2] = 0. The boson operators number of
particles in each well don’t commute with the Hamilto-
nian and their time evolution is dictated by the Josephson
tunnelling current operator,

Ĵ =
1

2i
(â†1â2 − â†2â1), (6)

in coherent opposite phases because of the conservancy
of N̂ , with

[Ĥ, N̂1] = +iΩĴ , [Ĥ, N̂2] = −iΩĴ , (7)

and

dN̂1

dt
= −Ω

~
Ĵ , (8)

dN̂2

dt
= +

Ω

~
Ĵ . (9)

From equations (8) and (9) we see that if Ω = 0 we don’t
have tunnelling.
If we introduce a phase φij for each term â†i âj, i, j =

1, 2, we can write the current (6) as

Ĵ =
1

2
(eiφ12 â†1â2 + eiφ21 â†2â1), (10)

with φ12 = π/2 and φ21 = 3π/2. So, the phase difference
in the current Ĵ is |∆φ| = π. The tunnelling current Ĵ
together with the imbalance current Î

Î =
1

2
(eiφ11N̂1 + eiφ22N̂2), (11)

with φ11 = 0 and φ22 = π, to get the phase difference
in the current Î equal to |∆φ| = π, and the coherent
correlation tunnelling current operator T̂

T̂ =
1

2
(eiφ12 â†1â2 + eiφ21 â†2â1), (12)

with φ12 = 0 or 2π and φ21 = 0 or 2π, to get the phase
difference in the current T̂ equal to |∆φ| = 0 or 2π,
generates the currents algebra

[T̂ , Ĵ ] = +iÎ, [T̂ , Î] = −iĴ , [Ĵ , Î] = +iT̂ . (13)

With the identification L̂x ≡ ~T̂ , L̂y ≡ ~Ĵ , and L̂z ≡
~Î we can write it in the standard compact way of the
momentum angular

[L̂k, L̂l] = i~εklmL̂m. (14)

where εklm is the antisymmetric Levi-Civita tensor with
k, l,m = x, y, z and εxyz = +1.
We have two Casimir operators for that currents al-

gebra. One of them is the total number of particles,
Ĉ1 = N̂ , related to the U(1) symmetry and the another
one is related to the momentum angular algebra and the
O(3) symmetry, Ĉ2 = T̂ 2 + Î2 + Ĵ 2.

We can show that Ĉ2 is just a function of Ĉ1

Ĉ2 =
Ĉ1

2

(
Ĉ1

2
+ 1

)
. (15)
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The current algebra (13) is the same for the model [8].
We has been described it in details in [61].

Current Quantum Dynamics - We can rewrite the
Hamiltonian (1) using those currents operators

Ĥ = αÎ2 + (βĈ1 + γ)Î − 2ΩT̂ +
Ĉ1

2

(
Ĉ1

2
ρ+ ξ

)
,(16)

where,

α = K11 − 2K12 +K22

β = K11 −K22,

γ = U1 − µ1 − U2 + µ2,

ρ = K11 + 2K12 +K22

ξ = U1 − µ1 + U2 − µ2

Ω = Ω12 = Ω21. (17)

We define the Casimir operator Ẑ = βĈ1+γ. We can see
that the Casimir operators are also conserved quantities,
[Ĥ, Ĉ1] = 0.

The quantum dynamic of those currents are dictated
by the momentum angular algebra, their commutation
relations with the Hamiltonian and the parameters. We
can use the Heisenberg equation of motion (5) to write
the second time derivative of any operator Ô in the

Heisenberg picture as [61]

d2Ô

dt2
=

(
i

~

)2

[Ĥ, [Ĥ, Ô]], (18)

or as

d2Ô

dt2
=

i

~
[Ĥ,

dÔ

dt
]. (19)

It is direct to generalize the Eqs. (18) and (19) for the
n-th time derivative of any operator Ô in the Heisenberg
picture. So we can write

dnÔ

dtn
=

(
i

~

)n

[Ĥ, [Ĥ, [Ĥ, . . . , [Ĥ, Ô]]]︸ ︷︷ ︸
n commutators

, (20)

or as

dnÔ

dtn
=

i

~
[Ĥ,

dn−1Ô

dtn−1
], (21)

where we has been defined

d0Ô

dt0
≡ Ô, (22)

and n ≥ 1. We get the Heisenberg equation of motion
(5) for n = 1 and the Eqs. (18) and (19) for n = 2. Using
the Eq. (18) or (19) we found the following equations for
the quantum dynamics of the three currents

d2Î
dt2

+ 4
Ω2

~2
Î = −4

Ωα

~2
ÎT̂ + 2i

Ωα

~2
Ĵ − 2

Ω

~2
ẐT̂ , (23)

d2Ĵ
dt2

+
1

~2

[
α2 + Ẑ2 + 4Ω2

]
Ĵ = −4

α2

~2
Î2Ĵ − 2i

α2

~2
Î T̂ − 2

α

~2
ẐÎĴ

− 4
αΩ

~2
Ĵ T̂ − 2i

α

~2
ẐT̂ − 2i

αΩ

~2
Î, (24)

d2T̂
dt2

+
1

~2

(
α2 + Ẑ2

)
T̂ = −4

α2

~2
ÎÎ T̂ + 4i

α2

~2
ÎĴ − 4

α

~2
ẐÎT̂

+ 2i
α

~2
ẐĴ − 4

Ωα

~2
(Î2 − Ĵ 2)− 2

Ω

~2
ẐÎ. (25)

We can see from the Eqs. (23), (24) and (25) that
the currents are coupled on the right hand side of these
equations. To simplify our analysis we will make some
choices of the parameters. Different choices of the pa-
rameters of the Hamiltonian gives us different dynamics
for the currents. Fortunately the parameters appear in
these equations in the linear and quadratic power. So
we can consider a perturbation theory in the parame-
ters of the Hamiltonian until the second power terms.

If we calculate the n-th time derivative of the current
operators we will get the n-th power of the parameters.
Here we will need consider only until second order time
derivative of the current operators. We can try to use
mean field theory (MFT) to decouple the currents to get
some insight. In the first approximation, for example,
we can use 〈L̂kL̂l〉 ≈ 〈L̂k〉〈L̂l〉. But for this approxi-
mation we get from the commutation relations (13) that
〈Î〉 ≈ 〈Ĵ 〉 ≈ 〈T̂ 〉 ≈ 0. Therefore, the currents are cor-
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related by the currents algebra (13) that forbid MFT
even in the first approximation. We also can see the
correlation between the currents, using the currents al-
gebra (13), writing the Heisenberg uncertainty relations
for each couple of currents

〈(∆̂T )2〉〈(∆̂J )2〉 ≤ 1

4
〈Î〉2, (26)

〈(∆̂T )2〉〈(∆̂I)2〉 ≤ 1

4
〈Ĵ 〉2, (27)

〈(∆̂J )2〉〈(∆̂I)2〉 ≤ 1

4
〈T̂ 〉2, (28)

where we are introducing the operator ∆̂Lk = L̂k−〈L̂k〉.
Choosing α = β = 0 we get three linear second order

differential equations

d2Î
dt2

+ 4
Ω2

~2
Î = −2

Ωγ

~2
T̂ , (29)

d2Ĵ
dt2

+
1

~2

(
γ2 + 4Ω2

)
Ĵ = 0, (30)

d2T̂
dt2

+
γ2

~2
T̂ = −2

Ωγ

~2
Î. (31)

We get the dynamics of a simple harmonic oscillator
(SHO) with natural angular frequency ω =

√
γ2 + 4Ω2/~

and period of the oscillations T = 2π~√
γ2+4Ω2

for the cur-

rent Ĵ . The Eqs. (29) and (31) are a system of two linear
differential equations of second order. If we diagonalize
the matrix of the coefficients of the system of the Eqs.
(29) and (31) we get the same angular frequency ω. If we
consider the same period of oscillation T = 40.1 ms and
angular frequency ω = 2π× 24.94 rad·Hz as in [29], with
the total number of particles N = 1150, we get the an-
gular frequencies ωΩ = 78.3 rad·Hz and ωγ = 15 rad·Hz
for the parameters of the Hamiltonian. Comparing with
the angular frequencies of the trap we found ωx ≈ 2πωΩ,
ωy ≈ 2π × 0.843ωΩ and ωz ≈ 2π × 1.150ωΩ for the tun-
nelling amplitude Ω and ωx ≈ 2π×5.2ωγ, ωy ≈ 2π×4.4ωγ

and ωz ≈ 2π × 6.0ωγ for the parameter γ. The height
of the barrier is Vb ≈ 2π~ × 3.36ωΩ ≈ 2π~ × 17.53ωγ.
In the Figs. (2) and (3) we show the numerical solu-
tion for the same choice of these parameters. The initial
condition for the first derivative for all currents is zero.
The currents are normalized by N . For this choice of the
parameters the current Ĵ is independent and the initial
condition determines its amplitude of oscillation. The
currents Î and T̂ are correlated and the initial condition
don’t determines their amplitude of oscillation. The cur-
rents dynamics are sensitive to the initial condition [29]
and they have the same frequency. We have self-trapping

0 10 20 30 40 50
-1.0

-0.5

0

0.5

1.0

tHmsL

FIG. 2. Current quantum dynamics of the average value of
the currents for ωΩ = 78.3 rad·Hz and ωγ = 15 rad·Hz. The

initial condition for the current Î(t) (full line) is Î(0) = 1.

The initial condition for the current Ĵ (t) (dashed line) is

Ĵ (0) = −1. The initial condition for the current T̂ (t) (dotted

line) is T̂ (0) = −0.5.
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-1.0

-0.5

0

0.5

1.0

tHmsL

FIG. 3. Current quantum dynamics for ωΩ = 78.3 rad·Hz and
ωγ = 15 rad·Hz. The initial condition for the current Î(t) (full

line) is Î(0) = 0.5. The initial condition for the current Ĵ (t)

(dashed line) is Ĵ (0) = −0.5. The initial condition for the

current T̂ (t) (dotted line) is T̂ (0) = 0.5.

for the current T̂ and Josephson and Rabi dynamics for
the currents Î and Ĵ .
In the limit α = β = γ = 0 we get two independent

SHO with ωI = ωJ = 2Ω
~
the natural angular frequency.

The period of the oscillations is T = π~
Ω
. In analogy with

the classical SHO, the ratio between the elastic constant

K and the mass m is K
m

= 4Ω2

~2 . The current T̂ is a

conserved quantity, [Ĥ, T̂ ] = 0, but this don’t means
that we don’t have tunnelling. We can see from Eqs. (8)
and (9) that the quantum dynamic of N̂1, N̂2, and Î only
depend of the current Ĵ and the amplitude of tunnelling
Ω.
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Summary - We have showed that a current algebra ap-
pears when we calculate the quantum dynamics of the
tunnelling of the atoms. We generalize the Heisenberg
equation of motion to write the n-th time derivative of
any operator. Then we calculated the quantum dynamics
of these currents and showed that different dynamics ap-
pear when we consider different choices of the parameters
of the Hamiltonian. The parameters α and ρ determines
the non linearity of the interaction, the parameters γ and
ξ determines the relation between the on-well energies
and the external potentials, the parameter β determines
the symmetry of the interaction between the condensates.

The author acknowledge Capes/FAPERJ (Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior/Fundação de Amparo à Pesquisa do Estado do Rio
de Janeiro) for the financial support.
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