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Abstract The paper aims to provide an explanation for the tiny value of the cosmo-
logical constant and the low vacuum energy density to represent the dark energy. To
accomplish this, we will search for a fundamental principle of symmetry in space-
time by means of the elimination of the classical idea of rest, by including an invariant
minimum limit of speed in the subatomic world. Such a minimum speed, unattainable
by particles, represents a preferred reference frame associated with a background field
that breaks down the Lorentz symmetry. The metric of the flat space-time shall include
the presence of a uniform vacuum energy density, which leads to a negative pressure at
cosmological length scales. Thus, the equation of state for the cosmological constant
[p(pressure)= −ε (energy density)] naturally emerges from such a space-time with
an energy barrier of a minimum speed. The tiny values of the cosmological constant
and the vacuum energy density will be successfully obtained, being in agreement with
the observational results of Perlmutter, Schmidt and Riess.

Keywords Cosmological constant · Vacuum energy density · Background field ·
Minimum speed

1 Introduction

Driven by a search for new fundamental symmetries in Nature [1,2] the paper attempts
to implement a uniform background field into the flat space-time. Such a background
field connected to a uniform vacuum energy density represents a preferred reference
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frame, which leads us to postulate a universal minimum limit of speed for particles
with very large wavelengths (very low energies).

The idea that some symmetries of a fundamental theory of quantum gravity may
have non trivial consequences for cosmology and particle physics at very low energies
is interesting and indeed quite reasonable. So, it seems that the idea of a universal
minimum speed as one of the first attempts of Lorentz symmetry violation could have
the origin from a fundamental theory of quantum gravity at very low energies (very
large wavelengths).

The hypothesis of the lowest non-null limit of speed (V ) for low energies (v << c)
in space-time results in the following physical reasoning:

- In non-relativistic quantum mechanics, the plane wave wave-function (Ae±i px/h̄)
which represents a free particle is an idealisation that is impossible to conceive under
physical reality. In the event of such an idealized plane wave, it would be possible
to find with certainty the reference frame that cancels its momentum (p = 0), so
that the uncertainty on its position would be �x = ∞. However, the presence of an
unattainable minimum (non-zero) limit of speed emerges in order to prevent the ideal
case of a plane wave wave-function (p = constant or �p = 0 with �x = ∞). This
means that there is no perfect inertial motion (v = constant) such as a plane wave,
except the privileged reference frame of a universal background field connected to an
unattainable minimum limit of speed V , where p would vanish. However, since such
a minimum speed V (universal background frame SV ) is unattainable for the particles
with low energies (large wavelengths), their momentum can actually never vanish
when one tries to be closer to such a preferred frame (V ), as it will be shown that
there is an insuperable energy barrier when one tries to decelerate a particle very close
to the vacuum regime of the background frame SV , which represents a fundamental
zero-point energy for v → V (see Sect. 5).

On the other hand, according to special relativity (SR), the momentum cannot be
infinite since the maximum speed c is also unattainable for a massive particle, except
the photon (v = c) as it is a massless particle.

This reasoning allows us to think that the electromagnetic radiation (photon:“c −
c” = c) as well as the massive particle (“v − v” > V for v < c) are in equal-footing in
the sense that it is not possible to find a reference frame at rest (vrelative = 0) for both
through any speed transformation in a space-time with a maximum and a minimum
limit of speed. Thus such a doubly special relativity with an invariant minimum speed
will be denominated as symmetrical special relativity (SSR). We will look for new
speed transformations of SSR in the next section.

In a future paper, we will investigate the origin of the minimum speed V , which
could have a direct connection with the Planck length, i.e., the minimum length lP =√

Gh̄/c3(∼10−35m) in a quantum gravity theory.
The dynamics of particles in the presence of a universal background reference frame

connected to V is within a context of the ideas of Sciama [3], Schrödinger [4] and
Mach [5], where there should be an “absolute” inertial reference frame in relation to
which we have the inertia of all moving bodies. However, we must emphasize that the
approach used here is not classical as machian ideas, since the lowest (unattainable)
limit of speed V plays the role of a privileged (inertial) reference frame of background
field instead of the “inertial” frame of fixed stars.
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It is very curious to notice that the idea of a universal background field was sought
in vain by Einstein [6,7] motivated firstly by Lorentz. It was Einstein who coined
the term ultra-referential as the fundamental aspect of reality to represent a universal
background field [8]. Based on such a concept, let us call ultra-referential SV to be the
universal background field of a fundamental inertial reference frame connected to V .

The present doubly special relativity (SSR) is a kind of deformed special relativity
(DSR) with two invariant scales, namely the speed of light c and a minimum speed V .
DSR theory was first investigated by Camelia et al. [9–12]. It contains two invariant
scales: the speed of light c and a minimum length scale (Planck length lP of quantum
gravity). An alternative approach to DSR theory, inspired by that of Camelia, was
proposed later by Smolin and Magueijo [13–15].

Another extension of SR is known as triply special relativity, which is characterized
by three invariant scales, namely the speed of light c, a mass k and a length R [16]. Still
another generalization of SR is the quantizing of speeds [17], where Barrett-Crane spin
foam model for quantum gravity with positive cosmological constant was considered,
encouraging the authors to look for a discrete spectrum of velocities and the physical
implications of this effect, namely an effective deformed Poincaré symmetry.

2 Transformations of space-time and velocity in the presence of the
ultra-referential SV

The classical notion we have about the inertial (galilean) reference frames, where the
system at rest exists, is eliminated in SSR where v > V (SV ) (Fig. 1). However, if
we consider classical systems composed of macroscopic bodies, the minimum speed
V is neglected (V = 0) and so we can reach a vanishing velocity (v = 0), i.e., in
the classical approximation (V → 0), the ultra-referential (background frame) SV

is eliminated and simply replaced by the galilean reference frame S connected to a
classical system at rest.

Since we cannot consider a reference system made up of a set of infinite points at
rest in quantum space-time with an invariant minimum speed, then we should define
a new status of referentials, namely a non-galilean reference system, which is given
essentially as a set of all the particles having the same state of movement (speed v)
with respect to the ultra-referential SV (preferred reference frame of the background
field), so that v > V , V being unapproachable and connected to SV . So, a set of
particles with the same speed v with respect to the ultra-referential SV provides a
given non-galilean framework. Hence, SSR should contain three postulates, namely:

Fig. 1 S′ moves with a speed
v(> V ) with respect to the
background field of the
covariant ultra-referential SV . If
V → 0, SV is eliminated (empty
space) and, thus, the galilean
frame S takes place, recovering
the Lorentz transformations
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(1) The non-equivalence (asymmetry) of the non-galilean reference frames due to
the presence of the background frame SV that breaks down Lorentz symmetry,
i.e., we cannot exchange v for −v by means of inverse transformations, since we
cannot achieve a rest state (v = 0) for a certain non-galilean reference frame in
order to reverse the direction of its velocity only for one spatial dimension;

(2) the invariance of the speed of light (c);
(3) the covariance of the ultra-referential SV (background framework) connected to

an invariant and unattainable minimum limit of speed V , i.e., all the non-galilean
reference frames with speeds V < v ≤ c experience the same background frame
SV , in the sense that the background energy (vacuum energy) at SV does not
produce a flow −v at any of these referentials. Thus, SV does not work like
the newtonian absolute space filled by luminiferous (galilean) ether in the old
(classical) sense, in spite of SV ’s being linked to a background energy that works
like a non-galilean “ether”, leading to the well-known vacuum energy density
(cosmological constant), as we will show later.

The third postulate is directly connected to the second one. Such a connection will
be clarified by investigating the new velocity transformations to be obtained soon.

Of course if we consider V = 0, we recover the well-known two postulates of SR,
i.e., we get the equivalence of inertial reference frames, where one can exchange v

for −v with appropriate transformations and, consequently, this leads to the absence
of such a background field (SV ); however, the constancy of the speed of light is still
preserved.

Let us assume the reference frame S′ with a speed v in relation to the ultra-referential
SV according to Fig. 1.

So, to simplify, consider the motion only at one spatial dimension, namely (1+1)D
space-time with the background field SV . So we write the following transformations:

dx ′ = �(d X − β∗cdt) = �(d X − vdt + V dt), (1)

where β∗ = βε = β(1−α), being β = v/c and α = V/v, so that β∗ → 0 for v → V
or α → 1.

dt ′ = �

(
dt − β∗d X

c

)
= �

(
dt − vd X

c2 + V d X

c2

)
, (2)

being �v = vxx. We have � =
√

1−α2√
1−β2

. If we make V → 0 (α → 0), we recover

the Lorentz transformations, where the ultra-referential SV is eliminated and simply
replaced by the galilean frame S at rest for a classical observer.

In order to get the transformations in Eqs. (1) and (2) above, let us consider the
following more general transformations: x ′ = θγ (X − ε1vt) and t ′ = θγ (t − ε2vX

c2 ),
where θ , ε1 and ε2 are factors (functions) to be determined. We hope all these factors
depend on α, such that, for α → 0 (V → 0), we recover Lorentz transformations
as a particular case (θ = 1, ε1 = 1 and ε2 = 1). By using those transformations to
perform [c2t ′2 − x ′2], we find the identity: [c2t ′2 − x ′2] = θ2γ 2[c2t2 − 2ε1vt X +
2ε2vt X − ε2

1v2t2 + ε2
2v2 X2

c2 − X2]. Since the metric tensor is diagonal, the crossed
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terms must vanish and so we assure that ε1 = ε2 = ε. Due to this fact, the crossed
terms (2εvt X ) are cancelled between themselves and finally we obtain [c2t ′2 − x ′2] =
θ2γ 2(1− ε2v2

c2 )[c2t2 − X2]. For α → 0 (ε = 1 and θ = 1), we reinstate [c2t ′2 −x ′2] =
[c2t2 − x2] of SR. Now we write the following transformations: x ′ = θγ (X − εvt) ≡
θγ (X −vt +δ) and t ′ = θγ (t − εvX

c2 ) ≡ θγ (t − vX
c2 +�), where we assume δ = δ(V )

and � = �(V ), so that δ = � = 0 for V → 0, which implies ε = 1. So, from
such transformations we extract: −vt + δ(V ) ≡ −εvt and − vX

c2 + �(V ) ≡ − εvX
c2 ,

from where we obtain ε = (1 − δ(V )
vt ) = (1 − c2�(V )

vX ). As ε is a dimensionaless
factor, we immediately conclude that δ(V ) = V t and �(V ) = V X

c2 , so that we find

ε = (1 − V
v
) = (1 − α). On the other hand, we can determine θ as follows: θ is a

function of α (θ(α)), such that θ = 1 for α = 0, which also leads to ε = 1 in order to
recover the Lorentz transformations. So, as ε depends on α, we conclude that θ can
also be expressed in terms of ε, namely θ = θ(ε) = θ [(1 − α)], where ε = (1 − α).
Therefore we can write θ = θ [(1 −α)] = [ f (α)(1 −α)]k , where the exponent k > 0.
The function f (α) and k will be estimated by satisfying the following conditions:

(i) as θ = 1 for α = 0 (V = 0), this implies f (0) = 1.

(ii) the function θγ = [ f (α)(1−α)]k

(1−β2)
1
2

= [ f (α)(1−α)]k

[(1+β)(1−β)] 1
2

should have a symmetrical

behavior, that is to say it goes to zero closer to V (α → 1) in the same way it goes
to infinite closer to c (β → 1). In other words, this means that the numerator of the
function θγ , which depends on α should have the same shape of its denumerator,
which depends on β. Due to such conditions, we naturally conclude that k = 1/2

and f (α) = (1 + α), so that θγ = [(1+α)(1−α)] 1
2

[(1+β)(1−β)] 1
2

= (1−α2)
1
2

(1−β2)
1
2

=
√

1−V 2/v2√
1−v2/c2

= �,

where θ = √
1 − α2 = √

1 − V 2/v2.

The transformations shown in Eqs. (1) and (2) are the direct transformations from
SV [Xμ = (X, ct)] to S′ [x ′ν = (x ′, ct ′)], where we have x ′ν = �ν

μ Xμ (x ′ = �X ),
so that we obtain the following matrix of transformation:

� =
(

� −β(1 − α)�

−β(1 − α)� �

)

, (3)

such that � → L (Lorentz matrix of rotation) for α → 0 (� → γ ).

We obtain det� = (1−α2)

(1−β2)
[1 − β2(1 − α)2], where 0 < det� < 1. Since V (SV )

is unattainable (v > V ), this assures that α = V/v < 1 and therefore the matrix �

admits inverse (det� �= 0 (>0)). However, � is a non-orthogonal matrix (det� �= ±1)
and so it does not represent a rotation matrix (det� �= 1) in such a space-time due to
the presence of the privileged frame of background field SV that breaks strongly the
invariance of the norm of the 4-vector [(limit v → V in Eqs. (30) or (31)]. Actually
such an effect (det� ≈ 0 for α ≈ 1 or v ≈ V ) emerges from a new relativistic physics
of SSR for treating much lower energies at ultra-infrared regime closer to SV (very
large wavelengths).

We notice that det� is a function of the speed v with respect to SV . In the approx-
imation for v >> V (α ≈ 0), we obtain det� ≈ 1 and so we practically reinstate
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the rotation behavior of Lorentz matrix L as a particular regime for higher energies.
If we make V → 0 (α → 0), we recover det� ≈ detL = 1 (rotation condition). This
subject will be explored with more details in Sect. 3, where we will verify whether
Eq. (3) forms a group. We will explore deep physical implications of such a result that
will also lead to the tiny positive value of the cosmological constant (Sect. 6).

The inverse transformations (from S′ to SV ) are

d X = � ′(dx ′ + β∗cdt ′) = � ′(dx ′ + vdt ′ − V dt ′), (4)

dt = � ′
(

dt ′ + β∗dx ′

c

)
= � ′

(
dt ′ + vdx ′

c2 − V dx ′

c2

)
. (5)

In matrix form, we have the inverse transformation Xμ = �
μ
ν x ′ν (X = �−1x ′), so

that the inverse matrix is

�−1 =
(

� ′ β(1 − α)� ′

β(1 − α)� ′ � ′

)

, (6)

where we can show that � ′ = �−1/[1−β2(1−α)2], so that we must satisfy �−1� =
I .

Indeed we have � ′ �= � and therefore �−1 �= �(−v). This aspect of � has
an important physical implication. In order to understand such an implication, let
us first consider the rotation aspect of Lorentz matrix in SR. Under SR, we have
α = 0 (V = 0), so that � ′ → γ ′ = γ = (1 − β2)−1/2. This symmetry (γ ′ = γ ,
L−1 = L(−v)) happens because the galilean reference frames allow us to exchange
the speed v (of S′) for −v (of S) when we are at rest at S′. However, under SSR,
since there is no rest at S′, we cannot exchange v (of S′) for −v (of SV ) due to that
asymmetry (� ′ �= �, �−1 �= �(−v)). Due to this fact, SV must be covariant, namely
V remains invariant for any change of reference frame in such a space-time. Thus we
can notice that the paradox of twins, which appears due to that symmetry by exchange
of v for −v in SR should be naturally eliminated in SSR, where only the reference
frame S′ can move with respect to SV . So, SV remains covariant (invariant for any
change of reference frame). Such a covariance will be verified soon.

We have det� = �2[1−β2(1−α)2] ⇒ [(det�)�−2] = [1−β2(1−α)2]. So we
can alternatively write � ′ = �−1/[1−β2(1−α)2] = �−1/[(det�)�−2] = �/det�.
By inserting this result in Eq. (6) to replace � ′, we obtain the relationship between
the inverse matrix �−1 and �(−v), namely �−1 = �(−v)/det�.

By dividing Eq. (1) by Eq. (2), we obtain the following speed transformation:

vrel = v′ − v + V

1 − v′v
c2 + v′V

c2

, (7)

where we have considered vrel = vrelative ≡ dx ′/dt ′ and v′ ≡ d X/dt . v′ and v are
given with respect to SV , and vrel is the relative velocity between v′ and v. Let us
consider v′ > v (see Fig. 2).
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Fig. 2 SV is the covariant ultra-referential of background field related to the vacuum energy. S represents
the reference frame for a massive particle with speed v in relation to SV , where V < v < c. S′ represents the
reference frame for a massive particle with speed v′ in relation to SV . In this case, we consider V (SV ) <

v ≤ v′ ≤ c

If V → 0, the transformation in Eq. (7) recovers the Lorentz velocity transformation
where v′ and v are given in relation to a certain galilean frame S0 at rest. Since
Eq. (7) implements the ultra-referential SV , the speeds v′ and v are now given with
respect to the background frame SV , which is covariant (absolute). Such a covariance
is verified if we assume that v′ = v = V in Eq. (7). Thus, for this case, we obtain
vrel = “V − V ” = V .

Let us also consider the following cases in Eq. (7):

(a) v′ = c and v ≤ c ⇒ vrel = c. This just verifies the well-known invariance of
c.
(b) if v′ > v(= V ) ⇒ vrel = “v′ − V ” = v′. For example, if v′ = 2V and v = V
⇒ vrel = “2V − V ” = 2V . This means that V really has no influence on the
speed of the particles. So V works as if it were an “absolute zero of movement”,
being invariant and having the same value in all directions of space of the isotropic
background field.
(c) if v′ = v ⇒ vrel = “v − v”( �=0) = V

1− v2

c2 (1− V
v

)
. From (c) let us consider two

specific cases, namely:
– (c1) assuming v = V ⇒ vrel = “V − V ” = V as verified before.
– (c2) if v = c ⇒ vrel = c, where we have the interval V ≤ vrel ≤ c for

V ≤ v ≤ c.

This last case (c) shows us in fact that it is impossible to find the rest for the particle
on its own reference frame S′, where vrel(v) (≡�v(v)) is a function that increases with
the increasing of v . However, if we make V → 0, then we would have vrel ≡ �v = 0
and therefore it would be possible to find the rest for S′, which would become simply
a galilean reference frame of SR.

By dividing Eq. (4) by Eq. (5), we obtain

vrel = v′ + v − V

1 + v′v
c2 − v′V

c2

= v′ + v∗

1 + v′v∗
c2

, (8)

where we define the notation v∗ = vε = v(1 − α) = v(1 − V/v) = v − V .



CBPF-NF-016/15               8 

In Eq. (8), if v′ = v = V ⇒ “V + V ” = V . Indeed V is invariant, working
like an absolute zero state in SSR. If v′ = c and v ≤ c, this implies vrel = c. For
v′ > V and considering v = V , this leads to vrel = v′. As a specific example, if
v′ = 2V and assuming v = V , we would have vrel = “2V + V ” = 2V . And if
v′ = v ⇒ vrel = “v + v” = 2v−V

1+ v2

c2 (1− V
v

)
. In newtonian regime (V << v << c), we

recover vrel = “v +v” = 2v. In relativistic (einsteinian) regime (v → c), we reinstate
Lorentz transformation for this case (v′ = v), i.e., vrel = “v + v” = 2v/(1 + v2/c2).

By joining both transformations in Eq. (7) and in Eq. (8) into just one, we write the
following compact form:

vrel = v′ ∓ εv

1 ∓ v′εv
c2

= v′ ∓ v(1 − α)

1 ∓ v′v(1−α)

c2

= v′ ∓ v ± V

1 ∓ v′v
c2 ± v′V

c2

, (9)

being α = V/v and ε = (1 − α). For α = 0 (V = 0) or ε = 1, we recover Lorentz
speed transformations.

Transformations for (3+1)D in SSR will be treated elsewhere. In the next section,
we will check whether the new transformations given by Eqs. (1) and (2) form a group,
giving a physical explanation for such a result.

3 Do the space-time transformations with an invariant minimum speed
form a group? What are their deep implications?

It is well-known that the Lorentz transformations form a group (L = L(v)), since they
obey the following conditions, namely: a) L2 L1 = L(v2)L(v1) = L(v3) = L3 ∈ L(v)

(Closure condition); b) L1(L2L3) = (L1L2)L3 (Associativity); c) L0L = L L0 = L ,
such that L0 = L(0) = I (Identity element); d) L−1L = L L−1 = L0, being L−1 =
L(−v) (Inverse element).

Our goal is to make an analysis of the new transformations in Eqs. (1) and (2) with
regard to the conditions above in order to verify whether they form a group and discuss
deeply the results. So, to do that, we first rewrite the matrix � (Eq. 3), namely:

� =
(

� −�β∗

−�β∗ �

)

, (10)

where � =
√

1−V 2/v2√
1−v2/c2

. We have defined the notation β∗ = βε = β(1 − α) =
(v/c)[1 − V/v]. If V → 0 or α → 0, we recover the Lorentz matrix, i.e., �(v) →
L(v), since � → γ and β∗ → β.

Now, we have �1 = �(v1) as being

�1 =
(

�1 −�1β
∗
1

−�1β
∗
1 �1

)

=
⎛

⎝
�1 −�1

v∗
1
c

−�1
v∗

1
c �1

⎞

⎠ (11)

cdi
Texto digitado



9 CBPF-NF-016/15

and �2 = �(v2) as being

�2 =
(

�2 −�2β
∗
2

−�2β
∗
2 �2

)

=
⎛

⎝
�2 −�2

v∗
2
c

−�2
v∗

2
c �2

⎞

⎠ , (12)

so that �2�1 is

�2�1 = [�2�1(1 + β∗
2 β∗

1 )]
⎛

⎝
1 − (β∗

1 +β∗
2 )

1+β∗
2 β∗

1

− (β∗
1 +β∗

2 )

1+β∗
2 β∗

1
1

⎞

⎠ , (13)

where β∗
1 = β1ε1 = β1(1 −α1) = (v1/c)[1 − V/v1] and β∗

2 = β2ε2 = β2(1 −α2) =
(v2/c)[1 − V/v2].

We obtain that the multiplicative term of the matrix in Eq. (13) is written as

�2�1(1 + β∗
2 β∗

1 ) =
√

(1 − V 2/v2
2)(1 − V 2/v2

1)
1+(v∗

1v∗
2/c2)

√
1−(v2

1/c2+v2
2/c2−v2

1v2
2/c4)

. Now by

inserting this term into Eq. (13), we rewrite Eq. (13) in the following way:

�2�1 =

√(
1 − V 2

v2
2

)(
1 − V 2

v2
1

) (
1 + v∗

1v∗
2

c2

)

√

1 −
(

v2
1

c2 + v2
2

c2 − v2
1v2

2
c4

)

⎛

⎜
⎜
⎜
⎜
⎝

1 − 1
c

(
v∗

1+v∗
2

1+ v∗
1v∗

2
c2

)

− 1
c

(
v∗

1+v∗
2

1+ v∗
1v∗

2
c2

)

1

⎞

⎟
⎟
⎟
⎟
⎠

(14)

Now we should note that, if the Eq. (14) satisfies the closure condition, Eq. (14)
must be equivalent to

�2�1 = �3 = �3

⎛

⎝
1 − v∗

3
c

− v∗
3
c 1

⎞

⎠ , (15)

where, by comparing Eq. (14) with Eq. (15), we must verify whether the closure

condition is satisfied, i.e., �3 ≡
√

(1 − V 2/v2
2)(1 − V 2/v2

1)
1+(v∗

1v∗
2/c2)

√
1−(v2

1/c2+v2
2/c2−v2

1v2
2/c4)

and v∗
3 ≡ (v∗

2 + v∗
1)/[1 + (v∗

2v∗
1)/c2]. However, we first realize that such speed

transformation, which should be obeyed in order to satisfy the closure condition,
differs from the correct speed transformation (Eq. 8) that has origin from the space-
time transformations with a minimum speed given in Eqs. (4) and (5). So, according to
Fig. 2, if we simply redefine v′ = v2 and v = v1, we rewrite the correct transformation
(Eq. 8) as being vrel = v3 = (v2 + v∗

1)/[1 + (v2v
∗
1)/c2] with v∗

1 = v1 − V . Now, we
see that the correct transformation for v3 (Eq. 8) is not the same transformation given
in the matrix above (Eq. 14), i.e., we have v3 �= (v∗

2 + v∗
1)/[1 + (v∗

2v∗
1)/c2].

One of the conditions for having the closure relation is that the components outside
the diagonal of the matrix in Eqs. (14) or (15) must include v3 given by Eq. (8), which
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does not occur. Therefore, we are already able to conclude that such condition is not
obeyed in a spacetime with a minimum speed (a preferred reference frame) at the
subatomic level, i.e., we find �2�1 �= �3, which does not generate a group. In order
to clarify further this question, we just make the approximation V = 0 or also v1 � V
and v2 � V in Eq. (14), and thus we recover the closure relation of the Lorentz group,
as follows:

(�2�1)V =0 = L2L1 =
(

1+ v1v2
c2

)

√

1−
(

v2
1

c2 + v2
2

c2 − v2
1v2

2
c4

)

⎛

⎜
⎜
⎝

1 −1
c

(
v1+v2

1+ v1v2
c2

)

−1
c

(
v1+v2

1+ v1v2
c2

)
1

⎞

⎟
⎟
⎠

= L3, (16)

where

L3 = γ3

(
1 − v3

c

− v3
c 1

)

, (17)

which is the closure condition of the Lorentz group, since now it is obvious that the
Lorentz transformation of speeds appears outside the diagonal of the matrix in Eq. (16),
i.e., we find v3 = (v1 +v2)/[1+(v1v2)/c2]. And, in order to complete the verification
of the closure condition above, it is easy to verify that the multiplicative term of the

matrix (Eq. 16) is γ2γ1(1 + β2β1) =
(

1 + v1v2
c2

)
/

√

1 −
(

v2
1

c2 + v2
2

c2 − v2
1v2

2
c4

)
= γ3.

To do this, we have to consider v3 = (v1 + v2)/[1 + (v1v2)/c2], so that we use this

transformation to be inserted into γ3 = 1/

√
1 − v2

3/c2 and we finally show that γ3 =
1/

√
1 − v2

3/c2 = γ2γ1(1 + β2β1). However, now starting from this same procedure

for obtaining �3 =
√

1−V 2/v2
3√

1−v2
3/c2

, where we have to use the correct transformation for v3

(Eq. 8), we verify that �3 �= �2�1(1 + β∗
2 β∗

1 ) and thus we conclude definitively that
the closure condition does not apply to the new transformations, i.e., indeed we have
�2�1 �= �3.

Although we already know that the new transformations do not form a group, it is
still important to provide a physical justification for such conclusion. To do this with
more clarity, we also should investigate whether the identity element and the inverse
element exist in such a spacetime with an invariant minimum speed, since these two
conditions are relevant to give us a clear comprehension of the conception of motion
in this spacetime.

3.1 Identity element

For the case (1 + 1)D, the Lorentz group provides the identity element L0 = I(2X2),

since L0 L = L L0 = L . As the Lorentz matrix is L(2X2) =
(

γ −βγ

−βγ γ

)
, it is easy to
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see that, if we make v = 0 or β = 0 (rest condition), the Lorentz matrix recover the

identity matrix I(2X2) =
(

1 0
0 1

)
, since γ0 = γ (v = 0) = 1. This trivial condition of

rest plus the fact that det(L) = 1 (rotation matrix L) shows us the indistinguishability
of rest and inertial motion.

The new transformations are represented by the matrix

� =
(

� −β(1 − α)�

−β(1 − α)� �

)
, where we have β∗ = βε = β(1 − α), with

α = V/v. Now, it is important to notice that there is no any speed v that gener-
ates the identity matrix from the new matrix. We would expect that the hypothesis
v = V could do that, but, if we make v = V (α = 1) inside the new matrix,

we find the null matrix, i.e., �(V ) =
(

0 0

0 0

)

, since �(V ) = 0. So, we obtain

�(V )� = �V � = ��V =
(

0 0

0 0

)

�= �, where we have � = �(v > V ). Thus,

there is no identity element in this spacetime, which means that there should be a
distinction of motion and rest, since there is a preferred reference frame (an invariant
minimum speed) in respect to which, the motion v(> V ) is given, in view of the
absence of the rest condition for particles in this spacetime.

3.2 Inverse element

It is well-known that the inverse element exists in Lorentz transformations that form
a group, i.e., we have L−1(v) = L(−v), which means that we can exchange the
observer in the reference frame S at rest by another observer in the reference frame S′
with speed v in respect to S, so that the other observer at S′ simply observes S with
a speed −v. Such symmetry comes from the galilean relativity of motion, which it is
essentially due to the indistinguishability of rest and inertial motion. Here we must
stress that such indistinguishability is broken down in the new transformations, since
the invariant minimum speed related to a background reference frame introduces a
preferential motion v(> V ) that cannot be exchanged by −v due to the distinction of
motion and rest, since rest does not exist in this spacetime, where we get �−1(v) �=
�(−v), such that we obtain �(−v)�(v) = θ2

(
γ β(1 − α)γ

β(1 − α)γ γ

)

×
(

γ −β(1 − α)γ

−β(1 − α)γ γ

)

= �2

⎛

⎜
⎝

(
1 − v∗2

c2

)
0

0
(

1 − v∗2

c2

)

⎞

⎟
⎠ �= I(2X2). For

V = 0(α = 0), we recover the inverse element of the Lorentz group, that is a rotation
group.

In short, we have verified that the new transformations do not form a group and
we have provided a physical explanation for such Lorentz violation in view of the
existence of an invariant minimum speed that breaks down the indistinguishability of
rest and motion.
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We have also concluded that the new matrix � (Eq. 3) does not represent a rotation
matrix (Sect. 2). In view of this, we can realize that such transformations are not
related with the well-known rotation group SO(3) (Lie group), whose elements R(�α)

and R( �β) should obey a closure condition R(�α)R( �β) = R( �γ ), such that �γ = γ (�α, �β),
with R( �γ ) being a new rotation that belongs to the group, so that det(R) = +1 (rotation

condition), while we find det(�) = θ2γ 2
[
1 − v2(1−α)2

c2

]
, where 0 < det(�) < 1,

violating the rotation condition.
Although there could be a more complex mathematical structure in order to encom-

pass the new transformations, which should be deeply investigated, at least, here we
will make some interesting mathematical approximations on � in order to help us to
understand further the nature of the new transformations.

In a certain approximation, let us show that � is a combination of rotation and
deformation of the space-time interval ds, reminding the polar decomposition the-
orem in linear algebra for a “rigid” body that rotates and deforms. Intuitively, the
polar decomposition separates a certain matrix A into a component that stretches the
space along a set of orthogonal axes, represented by P , and a rotation (with possible
reflection) represented by U , i.e., A = U P . where U is a unitary matrix and P is a
Hermitian matrix.

When a rigid body rotates, its length remains invariant. This effect is analogous
to the invariance of the space-time interval ds under the Lorentz transformation L
(Lorentz group) due to a rotation.

When a “rigid” body deforms, such effect is analogous to a deformation (e.g:
stretching) of the spacetime interval ds that occurs close to the minimum speed (see
Eqs. 30 and 31 for v → V ). Thus, at a first sight, the new transformation � could
be written simply as a polar decomposition, so that � = L D, where L is a rotation
matrix (Lorentz matrix) as a special case of the unitary matrix U and D is a defor-
mation matrix (symmetric matrix) as a special case of the Hermitian matrix P , since
Hermitian matrices can be understood as the complex extension of real symmetric
matrices. However, we can verify that such analogy fails quantitatively when one tries
to calculate an exact matrix D(2x2) that satisfies the linear decomposition L D = � for
any speed v (any energy scale), i.e., there is no D(2x2) that satisfies such decomposi-
tion, because it seems that we have a kind of non-linear or inseparable combination of
rotation and deformation. So, in order to accomplish a stronger analogy with the polar
decomposition, we need to make some mathematical approximations on the matrix �

in such a way that we can be able to separate both effects of rotation and deformation.
To do this, let us first write the matrix � in the following way:

� =
√

1 − α2
√

1 − β2

(
1 − v(1−α)

c

− v(1−α)
c 1

)

(18)

Instead of making α = 0 (or V = 0) in order to recover the Lorentz matrix L , here
we make an alternative approximation, namely v >> V , which means that, for higher
energies, we recover practically the matrix L (rotation). On the other hand, for much
lower energies, i.e., for α ≈ 1 (or v ≈ V ), we get
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�(v≈V ) ≈
√

1 − α2

(
1 0

0 1

)

= θ

(
1 0

0 1

)

, (19)

where we have considered the L’Hôpital’s rule, by calculating limα→1
(1−α)√

1−α2 =
limα→1

√
1−α2

α
= 0. In other words, this means that

√
1 − α2|α≈1 >> (1 − α)|α≈1,

so that we can neglect (1 − α) with respect to
√

1 − α2 in such an approximation
(v ≈ V ), i.e, we make ε = (1 − α) = 0 into �, keeping the factor θ = √

1 − α2. We
obtain det[�(v≈V )] = θ2 = (1 − α2) = (1 − V 2/v2).

The inverse matrix �−1
(v≈V ) is

�−1
(v≈V ) ≈ 1√

1 − α2

(
1 0

0 1

)

= θ−1

(
1 0

0 1

)

, (20)

where det[�−1
(v≈V )] = θ−2 = (1 − α2)−1 = (1 − V 2/v2)−1.

Both the symmetric matrices in Eqs. (19) and (20) represent deformations, where,
for instance, the matrix in Eq. (20) leads to a stretching of the space-time interval
ds when v is closer to V . We realize that such deformations given only for much
lower energies close to the background frame SV , i.e., the matrices �v≈V = θ I and
�−1

v≈V = θ−1 I do not belong to the structure of the Lie group connected to the indentity
matrix I .

We conclude that the matrix � in Eq. (18) already contains effects of deformation
(ds′ �= ds), which become completely evident for much lower energies (v ≈ V ),
where det(�) ≈ 0, but, when the speed v increases drastically, i.e., v >> V , so,
now, the rotations of Lorentz group are pratically recovered (det(�) ≈ det(L) = 1)
and, thus, we recover the invariance ds′ = ds. With such approximations, the polar
decomposition is practically valid by making D = �(v≈V ), so that we can verify the
product L D = L�(v≈V ) = L(θ I ) ≈ �, where �(v≈V ) is a symmetric matrix, which
is exactly the reason for the effects of deformation of ds close to V .

We finally conclude that the set formed by the matrices that appear above does not
have a group structure or cannot be considered as a Poincaré’s subgroup. This point
must be discussed in depth.

Our next step will be to make an investigation of the main effect obtained directly
from the violation of the rotation structure at much lower speeds (v ≈ V ). Such an
effect should naturally lead to other deep implications, which will be pointed out, so
that we will realize that the whole theory contains elements that are connected by a
same mathematical and physical structure.

When we make a Lorentz transformation L(v) from the frame S(v = 0) to S′ with
speed v with regard to S, we have the well-known “boost”. As the boosts represent
rotations, the minimal boost is the identity matrix L(v = 0) = L(0) = I connected to
the rest state, such that L(0)X = X . However, as such minimal boost does not make
sense in this spacetime with a minimum speed that prevents the rest state, we must
stress that the component �(v≈V )(=θ I ) in the new transformation (� ≈ L�(v≈V ))

leads to a non-existence of boosts only in the approximation for much lower energies
(v → V or α → 1), due to the fact that we get θ = √

1 − α2 << 1. So, only for
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higher energies (v >> V or α ≈ 0), we get θ ≈ 1 and, thus, �(v≈V ) = θ I ≈ I ,
recovering the regime where the boosts take place (Lorentz group).

In short, the effects of “boosts” are generally weakened in this spacetime, mainly
in the regime when v ≈ V , i.e., much closer to the background frame SV . So, it is
important to stress that, in such special regime, there are no boosts and, therefore,
the transformation θ I has another meaning since it does not lead to the change of
reference frames. We will go deeper into this issue.

Actually, the symmetric matrix θ I (Eq. 19) is the reason of breaking the structure
of rotation group (boosts) and it should be interpreted just as a scale transformation
(θ ) that provides a variation of the usual space-time interval (ds) in function of speed
v, especially when v is close to V . The deep physical implication directly related to
the effect of variation of ds will be investigated below.

Since the matrix θ I just deforms the interval ds, this transformation does not act
for changing the reference frames. In view of this, we use the following notation to
represent such a scale transformation, namely:

x∗μ = θ I xμ, (21)

where x∗μ is the deformed vector, θ being a scale factor, since �(v≈V )xμ = θxμ =
x∗μ, so that we get

ds∗2 = ds2(v) = dx∗μdx∗
μ = θ2ds2 = det[�(v≈V )]ds2, (22)

where ds2 = dxμdxμ is the usual squared space-time interval of SR and ds∗2 is the
deformed squared space-time interval due to new relativistic effects closer to V (no
boosts).

As the usual interval ds does not remain invariant in this spacetime, specially when
v ≈ V ; so according to Eq. (22), we realize that the deformed interval ds∗ should be
the new invariant interval under the change of reference frames in this flat spacetime
with the presence of the background frame SV , such that ds∗′ = ds∗. In doing this,
we introduce a new invariance of deformed intervals in SSR, namely:

ds∗′2 = ds∗2 = gμνdxμdxν, (23)

where ds∗2 = (1 − α2)dxμdxμ = θ2ds2 and ds∗′2 = (1 − α2)dx ′μdx ′
μ = θ2ds′2.

Of course if we make V → 0 or α → 0 in Eq. (23), we recover the invariance of the
usual (non-deformed) ds of SR, i.e., ds′2 = ds2 = gμνdxμdxν .

Indeed we realize that the deformed interval ds∗ = θds = √
1 − V 2/v2ds remains

finite (Eq. 23), since, in the limit of θ → 0 (v → V ), the usual interval ds undergoes
a very large stretching, i.e., ds → ∞.

From Eq. (23), we obtain

ds∗′ = ds∗ = √
gμνdxμdxν =

√
c2dt2 − dx2, (24)
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where, in this case, we have dy = dz = 0 and ds∗′ =
√

(1 − α2)dx ′μdx ′
μ =

√
(1 − α2)(c2dt ′2 − dx ′2). Now, if we make dx ′ = 0 (or x ′ = 0, i.e., at the ori-

gin of the reference frame S′), from Eq. (24) we obtain

ds∗′ = cdτ ∗ =
√

1 − α2cdτ =
√

1 − α2cdt ′ =
√

c2dt2 − dx2, (25)

where we have considered dt ′ = dτ and so dt ′∗ = dτ ∗, with dτ ∗(=ds∗′/c =√
gμνdxμdxν/c) being the deformed proper time interval, where we have dτ∗ =

θdτ = √
1 − α2dτ . This result has a deep physical implication that has origin in the

breakdown of the structure of Lorentz group.
Now we are ready to investigate the physical implication from Eq. (25). So, by

simply making dx = vdt in Eq. (25) and performing the calculations, we finally
obtain

dτ
√

1 − α2 = dt
√

1 − β2 (26)

and, then

�τ

√

1 − V 2

v2 = �t

√

1 − v2

c2 , (27)

where �τ is the proper time interval and �t is the improper one. Eq. (27) is the
immediate physical implication of the violation of Lorentz group by means of the
symmetric matrix θ I (Eq. 19) that deforms the proper time, so that we can also write
Eq. (27) as being

√
det(θ I )�τ = θ�τ = �t

√
1 − v2/c2, where θ = √

1 − V 2/v2.
It is important to call attention to the fact that Eq. (27) shows us that the proper

time interval �τ depends on speed v and, thus, now it can also be deformed (dilated)
like the improper time interval. So, we realize that Eq. (27) reveals a perfect symmetry
in the sense that both intervals of time �t and �τ can dilate, namely �t dilates for
v → c and, on the other hand, �τ dilates for v → V . But, if we make V → 0,
we break down such new symmetry of SSR and so we recover the well-known time
equation of SR, where only �t dilates and �τ remains invariant.

From Eq. (27) we notice that, if we make v = v0 = √
cV (a geometric average

between c and V ), we find exactly the equality �τ (at S′) = �t (at S), namely this
is a newtonian result where the time intervals are the same. Thus we conclude that v0
represents a special intermediary speed in SSR (V << v0 << c) such that, if:

(a) v >> v0 (or v → c), we get �τ << �t . This is the well-known improper time
dilation.

(b) v << v0 (or v → V ), we get �τ >> �t . Let us call such a new effect as
improper time contraction or dilation of the proper time interval �τ with respect
to the improper time interval �t . This new effect becomes more evident only for
v (S′) → V (SV ), so that, in this limit, we have �τ → ∞ for a certain �t fixed
as being finite. In other words, this means that the proper time (S′) can now elapse
much faster than the improper one.
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It is interesting to notice that we restore the newtonian regime when V << v <<

c, which represents a regime of intermediary speeds, so that we get the newtonian
approximation from Eq. (27), i.e., �τ ≈ �t .

Squaring both members of Eq. (27) (�t = ��τ = θγ�τ ) and manipulating the
result, we write Eq. (27) as follows:

c2�τ 2 = 1

(1 − V 2

v2 )

[
c2�t2 − v2�t2

]
(28)

By placing Eq. (28) in a differential form and manipulating it, we obtain

c2
(

1 − V 2

v2

)
dτ 2

dt2 + v2 = c2 (29)

Eq. (29) shows us that both speeds related to the marching of time (“temporal-speed”
vt = c

√
1 − V 2/v2dτ/dt) and the spatial speed v form the vertical and horizontal

legs of a rectangular triangle respectively (Fig. 3). The hypotenuse of the triangle is
c = (v2

t +v2)1/2, which represents the spatio-temporal speed of any particle. If V → 0
in Eq. (29), we recover the time equation in SR, i.e., c2(dτ 2/dt2) + v2 = c2.

Looking at Fig. 3, now we see clearly three important cases, namely:

(a) If v ≈ c, vt ≈ 0 (the marching of proper time in S′ is much slower than in S),
such that �t >> �τ , with � ≈ γ >> 1, leading to the well-known dilation of
the improper time.

(b) If v = v0 = √
cV , vt =

√
c2 − v2

0, i.e., the marching of time in S′ is faster, but it
is still in an intermediary regime, such that �t = �τ , with � = �0 = �(v0) = 1
(newtonian regime).

(c) If v ≈ V (<< v0), vt ≈ √
c2 − V 2 = c

√
1 − V 2/c2 (the marching of proper

time is even faster), such that �t << �τ , with � ≈ θ << 1 (dilation of the
proper time). To illustrate this new effect of proper time dilation, let us consider a

Fig. 3 We see that the horizontal leg represents the spatial-speed v, while the vertical leg represents the

temporal-speed vt (marching of time), where vt =
√

c2 − v2 = c
√

1 − v2/c2 = c
√

1 − V 2/v2dτ/dt
(see Eq. 27), so that we always have v2 + v2

t = c2. In SR, when v = 0, the horizontal leg vanishes (no
spatial speed) and so the vertical leg becomes maximum (vt = vtmax = c). However, now according to
SSR, due to the existence of a minimum limit of spatial speed (V ), we can never nullify the horizontal leg,

so that the maximum temporal speed (maximum vertical leg) is vtmax =
√

c2 − V 2 = c
√

1 − V 2/c2 < c.
On the other hand vt (the vertical leg) cannot be zero since v = c is forbidden for massive particles. So we
conclude that the rectangular triangle is always preserved since both temporal and spatial speeds cannot
vanish and, thus, they always coexist. In this sense, we realize that there is a strong symmetry in SSR
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box that contains an ideal gas with N particles in the frame S of a laboratory. Since
the minimum speed V has a microscopic origin, then by considering an average
speed per particle of the gas (atom or molecule), we should have such average
speed vrms (S′) close to V (SV ) only when the temperature of the gas is T → 0K

(vrms =
√

〈v〉2
N → V ). Thus, an imaginary clock in thermal equilibrium with

such ultra-cold system should measure a dilated time interval with respect to the
time interval measured in the observer’s clock (laboratory S), or in other words,
we could say that ultra-cold systems “grow old” more rapidly, contrary to higher
energies when one grows old more slowly. A great experimental effort should be
made in order to detect the effect of proper time dilation, but, before this, we must
search for the origin of the invariant minimum speed.

3.2.1 Flat space-time metric with the background frame SV

From Eq. (23), we obtain

ds2 = 1
(

1 − V 2

v2

)gμνdxμdxν, (30)

where we have ds∗2 = θ2ds2 = (1 − α2)ds2 = (1 − V 2/v2)ds2 = gμνdxμdxν

(Eq. 23).
Eq. (30) is written as

ds2 = gμνdxμdxν, (31)

where  is a function of speed v given with respect to the background frame SV ,
namely:

 = (v) = 1
(

1 − V 2

v2

) , (32)

where we see that  = θ−2.
The presence of the ultra-referential SV deforms the Minkowsky metric (Eq. 31)

and works like a uniform background field that fills the whole flat space-time as a
perfect fluid, playing the role of a kind of de-Sitter (dS) space-time (� > 0) [18].

The function  can be understood as being a scale factor that increases for very
large wavelengths (cosmological scales) governed by vacuum (dS), that is to say for
much lower energies (v → V ) where we have  → ∞. Thus, the factor (= θ−2)

breaks strongly the invariance of ds only for very large distances governed by vacuum
of the ultra-referential SV , leading to the cosmological anti-gravity governed by the
tiny positive value of the cosmological constant (Sect. 6). In this regime of vacuum-SV

(v → V or  → ∞), the interval ds diverges.
On the other hand, we have  → 1 for smaller scales of length, namely for higher

energies (v >> V ), where dS space-time approximates to the Minkowski metric as a
special case, restoring the Lorentz symmetry and the invariance of ds.
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We realize that the presence of the background frame SV deforms the metric gμν by
means of the scale factor , so that we define a deformed flat metric Gμν = gμν that
remains a diagonal matrix, but now having  in its diagonal, namely: Gμν = gμν =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1(
1− V 2

v2

) 0 0 0

0 − 1(
1− V 2

v2

) 0 0

0 0 − 1(
1− V 2

v2

) 0

0 0 0 − 1(
1− V 2

v2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Therefore, we simply write Eq. (31) as being

ds2 = Gμνdxμdxν . If we make v >> V , this implies  → 1 and, thus, we recover
the Minkowsky metric gμν .

Now we are already able to conclude that there should be the same universal factor
θ = √

det(θ I )(< 1) that deforms all the invariant scalars of SR as, for instance, the
space-time interval, i.e., θds = ds∗, and the proper time interval, i.e., θdτ = dτ∗, so
that �s∗(=θ�s) and �τ ∗(=θ�τ) are the invariant intervals in SSR.

In Sect. 4, we will see that the mass, energy and momentum are also deformed
by the same factor θ , i.e., m(0,α) = θm0, E = θmc2 = θγ m0c2 = �m0c2 and
p = θγ m0v = �m0v. Thus, we already can conclude that all those invariant quantities
of SR and others like the rest mass (Sect. 4) are abandoned in SSR, since they are
modified by the factor θ due to the presence of the ultra-referential SV connected to
the own invariance of the minimum speed V .

In sum, we should understand that, as the invariance of c leads us to break down
the newtonian invariance of the improper time interval (�t = �τ ), by introducing the
dilation of the improper time interval (�t = γ�τ ), which still preserves the invariance
of the proper time and the space-time interval, now with a further step towards a new
invariance of a minimum speed V , we are led to break down such invariant quantities
of SR, since the proper time interval can also dilate by means of the new factor θ

(Eq. 27). So, the new invariant quantities in SSR are now the deformed intervals �τ ∗
and �s∗.

3.2.2 The alternative mathematical structure for the transformation �

Since the Lorentz matrix L represents a rotation in spacetime (detL = 1), it is known
that L can be alternatively written in the form, namely:

L =
(

γ −βγ

−βγ γ

)

=
(

cosh φ − sinh φ

− sinh φ cosh φ

)

, (33)

where cosh φ = γ = 1/
√

1 − β2, sinh φ = βγ = β/
√

1 − β2, tanh φ = β and
detL = (cosh φ)2 − (sinh φ)2 = 1.

From Eq. (33), we obtain the following transformations:

x ′ = (cosh φ)x − (sinh φ)ct ≡ γ (x − vt) (34)
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and

ct ′ = (cosh φ)ct − (sinh φ)x ≡ γ (ct − βx) (35)

Although we already know that the new matrix � is not a rotation matrix, even so
we will use the above hyperbolic representation for computing �, which will be given
in function of those hyperbolic functions and, after, we will interpret the results. In
order to do that, we make a factoration of θ outside the matrix �, by writing it in the
following way:

� = θ

(
γ −β(1 − α)γ

−β(1 − α)γ γ

)

=θ

(
cosh φ − sinh φ(1 − α)

− sinh φ(1 − α) cosh φ

)

,

(36)

where θγ = θ cosh φ = �, θβγ = θ sinh φ and det� = θ2[(cosh φ)2 − (1 −
α)2(sinh φ)2] �= 1.

From Eq. (36), we obtain the following new transformations:

x ′ = θ

[
(cosh φ)X − (sinh φ)ct + (sinh φ)

V

v
ct

]
≡ �(X − vt + V t) (37)

and

ct ′ = θ

[
(cosh φ)ct − (sinh φ)X + (sinh φ)

V

v
X

]
≡ �

(
ct − v

c
X + V

c
X

)
(38)

We realize that, if we make V = 0, which implies θ = 1, the rest state is recovered,
so that the background frame SV (X, Y, Z) (Fig. 1) is eliminated and replaced by the
galilean reference frame S(x, y, z) at rest. Therefore, the new transformations in Eqs.
(37) and (38) recover the well-known transformations of rotation given in Eqs. (34)
and (35).

Since the angle φ in Eqs. (37) and (38) cannot be understood as being simply a
rotation that preserves the norm of the usual 4-vector for the whole interval of speeds,
i.e., V < v < c, let us deal with Eqs. (37) and (38) by considering basically two
regimes, namely:

(a) For v >> V , such that V
v

≈ 0 (this is not necessarily a relativistic regime v ≈ c),
we find θ ≈ 1 and we can also neglect the terms (sinh φ) V

v
ct (Eq. 37) and

(sinh φ) V
v

X (Eq. 38) with respect to the others, so that we recover the rotation
regime within a good approximation, i.e., Eqs. (34) and (35) begin to take place.

(b) For v ≈ V , such that V
v

≈ 1 (this is a very low energy E ≈ 0, which is
obtained by making v → V in Eq. (42), thus we can consider the following
approximations: the second and third terms in the right member of both equations
(Eqs. 37 and 38) are cancelled between themselves, so that we immediately obtain
x ′ = θ(cosh φ)X and ct ′ = θ(cosh φ)ct , with θ << 1; however, as the rotations
(boosts) do not exist close to the background frame SV , we still should make φ →
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0 (cosh φ → 1) in such approximations, such that we finally get x∗μ = θ I xμ,
which is exactly Eq. (21), where we have replaced the index ′ by the index ∗, since
the boosts do not make sense in this new regime, where θ just plays the role of a
scale factor that deforms the interval ds.

4 Energy and momentum with the presence of a minimum speed

Let us firstly define the 4-velocity in the presence of the background frame SV con-
nected to the invariant minimum speed V , as follows:

Uμ =
⎡

⎣
vα

√
1 − V 2

v2

c
√

1 − v2

c2

,

√
1 − V 2

v2
√

1 − v2

c2

⎤

⎦ =
[
Uα, U 4

]
(39)

where μ = 1, 2, 3, 4 and α = 1, 2, 3. If V → 0, we recover the well-known 4-velocity
of SR. From (39), it is interesting to observe that the 4-velocity of SSR vanishes in
the limit of v → V (SV ), i.e., Uμ = (0, 0, 0, 0), whereas in SR, for v = 0 we find
Uμ = (1, 0, 0, 0).

The 4-momentum is

pμ = m0cUμ, (40)

being Uμ given in Eq. (39). So we find

pμ =
⎡

⎣
m0vα

√
1 − V 2

v2
√

1 − v2

c2

,
m0c

√
1 − V 2

v2
√

1 − v2

c2

⎤

⎦ =
[

pα, p4
]
, (41)

where p4 = E/c, such that

E = cp4 = mc2 = m0c2

√
1 − V 2

v2
√

1 − v2

c2

, (42)

where E is the total energy of the particle with speed v in relation to the background
reference frame (ultra-referential SV ). From Eq. (42), we observe that, if v → c ⇒
E → ∞. If v → V ⇒ E → 0 and, if v = v0 = √

cV ⇒ E = E0 = m0c2 (proper
energy in SSR), where we should stress that m0c2 requires a non-zero motion v(= v0)

in relation to SV . Figure 4 shows us the graph for the energy E .
From Eq. (41) we also obtain the 3(spatial)-momentum, namely:

�p = m0�v
√

1 − V 2

v2
√

1 − v2

c2

, (43)

where �v = (v1, v2, v3).
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Fig. 4 v0 = √
cV is a speed

such that we get the proper
energy of the particle
(E0 = m0c2) in SSR, where
�0 = �(v0) = 1. For v << v0
or closer to SV (v → V ), a new
relativistic correction on energy
arises, so that E → 0. On the
other hand, for v >> v0, being
v → c, so we find E → ∞

From Eq. (41), performing the quantity pμ pμ, we obtain the energy-momentum
relation of SSR, as follows:

pμ pμ = E2

c2 − �p2 = m2
0c2

(
1 − V 2

v2

)
, (44)

where �p2 = p2
1 + p2

2 + p2
3.

From Eq. (44), we obtain

E2 = c2 p2 + m2
0c4θ2 = c2 p2 + m2

0c4
(

1 − V 2

v2

)
(45)

In SR theory, that is represented by the Lorentz group, some elements are preserved
under rotations, as for instance, the 4-interval ds2(=gμνdxμdxν) and also the rest
mass by means of the inner product pμ pμ = m2

0c2, that is the dispersion relation,
where the rest mass is conserved. This means that the rest condition and the rest
mass are fundamental in SR, since they are independent of the state of motion, i.e.,
we have the well-known indistinguishability of motion and rest. However, the new
dispersion relation given in Eq. (44) (or Eq. 45) shows us that the rest condition does
not exist, since now the mass depends on its preferred state of motion v with respect
to the background frame connected to an invariant minimum speed V , i.e., the ultra-
referential SV . This is the reason why we find the massive term as a function of α, i.e.,
we get m2

0c4(1 − α2) in Eqs. (44) and (45).
In Eq. (44), when, α → 1 (v → V ), we find pμ pμ → 0, however, we can never

nullify pμ pμ, since the minimum speed V is unattainable (see Sect. 5).
In the present work, as we are focusing our attention on some dynamical implica-

tions of a minimum speed, let us leave a more detailed development of the physical
consequences of SSR in terms of field-theory actions to be explored elsewhere. How-
ever, here it would be interesting to mention that the wave operator is covariant under
the new transformations.

In order to obtain the new dispersion relation in an alternative and simple way, being
consistent with the result obtained from the formalism of 4-momentum, we have to
consider p = �m0v, E = �m0c2 and E0 = m0c2, such that, we first calculate the
quantity c2 p2 and we obtain
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c2 p2 = m2
0c2(v2 − V 2)
(

1 − v2

c2

) (46)

On the other hand, we find

E2 − E2
0 = m2c4 − m2

0c4 = m2
0c4

(
1 − v2

c2

)
[
v2

c2 − V 2

v2

]
(47)

It is easy to verify that, if we make V = 0 in Eq. (46) and in Eq. (47), we recover
the well-known dispersion relation of SR, i.e., c2 p2 = E2 − E2

0 = m2c4 − m2
0c4.

However, according to Eqs. (46) and (47), we see that (E2 − m2
0c4) �= c2 p2. So, in

order to obtain a new energy-momentum relation (new dispersion relation) with the
presence of the minimum speed V , we should compare Eq. (46) with Eq. (47) by
introducing a certain correction function A(v), so that now we write the following
identity:

E2 − m2
0c4 = m2

0c4
(

1 − v2

c2

)
[
v2

c2 − V 2

v2

]
≡ m2

0c2(v2 − V 2)
(

1 − v2

c2

) + A(v) = c2 p2 + A(v),

(48)

where A(v) should be found in order to satisfy the identity in Eq. (48). After performing
some calculations we find A(v) = −m2

0α
2c4 = −m2

0c4(V 2/v2). Now by inserting
A(v) into Eq. (48), we finally obtain the relation, namely E2−m2

0c4 = c2 p2+ A(v) =
c2 p2 − m2

0c4(V 2/v2), from where we get

E2 = c2 p2 + m2
0c4 − m2

0c4
(

V 2

v2

)
= c2 p2 + m2

0c4
(

1 − V 2

v2

)
, (49)

that is the same relation in Eq. (45). Therefore, we can conclude that a certain massive
term in this spacetime has always connection with the state of motion with respect to
the preferred frame-SV , where, according to Eq. (49), we can write the effective mass
as m(0,α) = θm0 = m0

√
1 − V 2/v2, which does not represent a rest mass m0, since

v > V . In view of this, we can also write the total energy, as follows:

E = m(0,α)c
2 + K = γ m(0,α)c

2 =
√

1 − V 2

v2
√

1 − v2

c2

m0c2, (50)

where K is the knetic energy and E = γ m(0,α)c2 = γ θm0c2 = �m0c2. So, from
Eq. (50) we obtain K , namely:

K = m(0,α)c
2(γ − 1) = m0c2

√

1 − V 2

v2

⎛

⎝ 1
√

1 − v2

c2

− 1

⎞

⎠ , (51)
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where K → 0 if v → V . If V → 0 in Eq. (51), we recover the relativistic knetic
energy, i.e., K = m0c2(γ − 1).

Making an expansion in Eq. (51) and consider the approximation v << c, we find

K = m0c2

√

1 − V 2

v2

(
1 + v2

2c2 + · · · − 1

)
≈ 1

2

⎛

⎝m0

√

1 − V 2

v2

⎞

⎠ v2 = 1

2
m(0,α)v

2,

(52)

where m(0,α) = m0θ(v) = m0

√
1 − V 2

v2 .
Now, also making the approximation v >> V (α ≈ 0) in Eq. (52), i.e., m(0,α) ≈

m(0,0) = m0, we finally obtain the approximation V << v << c, so that we simply
find

K ≈ 1

2
m0v

2, (53)

which is the newtonian knetic energy, that is recovered only for intermediary speeds
in such a spacetime with an invariant minimum speed.

The de-Broglie wavelength of a particle is due to its motion v with respect to SV ,
namely:

λ = h

p
= h

�m0v
= h

m0v

√
1 − v2

c2
√

1 − V 2

v2

, (54)

from where we have used the momentum p = �m0v = θγ m0v given with respect to
SV (Eq. 43).

If v → c ⇒ λ → 0 (spatial contraction) and p → ∞. If v → V (SV ) ⇒ λ → ∞
(spatial dilation by breaking down Lorentz symmetry), which means that we have very
large wavelengths. This leads to  → ∞ (see Eqs. 30 and 31) and p → 0, since we
can alternatively write p = θγ m0v = −1/2γ m0v, where  = θ−2 = 1/(1 − α2).

4.1 Transformations of momentum-energy in the presence of the
ultra-referential SV

By considering the quadri-vector of momentum-energy given in Eq. (41), we have
pμ = [pα, E/c]. Since we already have considered the motion in only one dimension
(e.g: x), we obtain the vector [p1, E/c], where p1 = px .

Now, as we want to investigate how pμ transforms in such a spacetime with the
presence of the ultra-referential SV , we have to make those two transformations by
using the matrix � (Eq. 3) and its inverse �−1 (Eq. 6). So, by first considering �, we
rewrite

� =
(

� −β(1 − α)�

−β(1 − α)� �

)

, (55)
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such that the direct matricial transformation p′ν = �ν
μ pμ (SV → S′) leads to the new

momentum-energy transformations, as follows:

p′
x = �

[
px − v(1 − α)E

c2

]
= �

(
px − vE

c2 + V E

c2

)
, (56)

being p′
y = py and p′

z = pz .

E ′ = � [E − v(1 − α)px ] = � (E − vpx + V px ) (57)

We know that the inverse matrix (Eq. 6) that transforms S′ → SV is

�−1 =
(

� ′ β(1 − α)� ′
β(1 − α)� ′ � ′

)
, (58)

where we find � ′ = �−1/[1−β2(1−α)2]. Thus, the inverse matricial transformation
pν = �−1ν

μ p′μ (S′ → SV ) leads to the following momentum-energy transformations,
namely:

px = � ′
[

p′
x + v(1 − α)E ′

c2

]
= � ′

(
p′

x + vE ′

c2 − V E ′

c2

)
, (59)

being py = p′
y and pz = p′

z .

E = � ′ [E ′ + v(1 − α)p′
x

] = � ′ (E ′ + vp′
x − V p′

x

)
(60)

The Lorentz transformations of the energy-momentum pμ are simply recovered if
we make V = 0 (Fig. 5).

Fig. 5 The external and internal
conical surfaces represent
respectively the speed of light c
and the unattainable minimum
speed V , where V is represented
by the dashed line, namely a
definitely prohibited boundary
for any particle. For a point P in
the world line of a particle, in
the interior of the two conical
surfaces, we obtain a
corresponding internal conical
surface, such that we must have
V < vp ≤ c
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5 Power of an applied force: the energy barrier of a minimum speed
connected to the vacuum energy

Let us consider a force applied to a particle, in the same direction of its motion. More
general cases where the force is not necessarily parallel to velocity will be treated
elsewhere. In our specific case ( �F ||�v), the relativistic power Pow(= vdp/dt) of SSR
is given as follows:

Pow = v
d

dt

⎡

⎣m0v

(
1 − V 2

v2

) 1
2
(

1 − v2

c2

)− 1
2

⎤

⎦ , (61)

where we have used the momentum p given in Eq. (43).
After performing the calculations in Eq. (61), we find

Pow =

⎡

⎢
⎢
⎣

(
1 − V 2

v2

) 1
2

(
1 − v2

c2

) 3
2

+ V 2

v2
(

1 − v2

c2

) 1
2
(

1 − V 2

v2

) 1
2

⎤

⎥
⎥
⎦

d Ek

dt
, (62)

where Ek = 1
2 m0v

2.
If we make V → 0 and c → ∞ in Eq. (62), we simply recover the power obtained

in newtonian mechanics, namely Pow = d Ek/dt . Now, if we just consider V → 0
in Eq. (62), we recover the well-known relativistic power of SR, namely Pow =
(1 − v2/c2)−3/2d Ek/dt . We notice that such a relativistic power tends to infinite
(Pow → ∞) in the limit v → c. We explain this result as an effect of the drastic
increase of an effective inertial mass close to c, namely mef f = m0(1 − v2/c2)k′′

,
where k′′ = −3/2. We must stress that such an effective inertial mass is the response
to an applied force parallel to the motion according to Newton second law, and it
increases faster than the relativistic mass m = mr = m0(1 − v2/c2)−1/2.

The effective inertial mass mef f we have obtained is a longitudinal mass mL , i.e., it
is a response to the force applied in the direction of motion. In SR, for the case where
the force is perpendicular to velocity, we can show that the transversal mass increases
like the relativistic mass, i.e., m = mT = m0(1 − v2/c2)−1/2, which differs from the
longitudinal mass mL = m0(1 − v2/c2)−3/2. So, in this sense, there is anisotropy of
the effective inertial mass to be also investigated in more details by SSR in a further
work.

The mysterious discrepancy between the relativistic mass m (mr ) and the longitudi-
nal inertial mass mL from Newton second law (Eq. 62) is a controversial issue [19–25].
Actually the newtonian notion about inertia as the resistance to acceleration (mL ) is
not compatible with the relativistic dynamics (mr ) in the sense that we generally can-
not consider �F = mr �a. The dynamics of SSR aims to give us a new interpretation
for the inertia of the newtonian point of view in order to make it compatible with the
relativistic mass. This compatibility will be possible just due to the influence of the
background field that couples to the particle and “dresses” its relativistic mass in order
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to generate an effective (dressed) mass in accordance with the newtonian notion about
inertia from Eqs. (61) and (62). This issue will be clarified in this section.

From Eq. (62), it is important to observe that, when we are closer to V , there
emerges a completely new result (correction) for power, namely:

Pow ≈
(

1 − V 2

v2

)− 1
2 d

dt

(
1

2
m0v

2
)

, (63)

given in the approximation v ≈ V . So, we notice that Pow → ∞ when v ≈ V . We
can also make the limit v → V for the general case (Eq. 62) and so we obtain an
infinite power (Pow → ∞). Such a new relativistic effect deserves the following very
important comment: Although we are in the limit of very low energies close to V ,
where the energy of the particle (mc2) tends to zero according to the approximation
E = mc2 ≈ m0c2(1 − V 2/v2)k with k = 1/2 (e.g.: make the approximation v ≈ V
in Eq. (42), on the other hand the power given in Eq. (63) shows us that there is an
effective inertial mass that increases to infinite in the limit v → V , that is to say,
from Eq. (63) we get the effective mass mef f ≈ m0(1 − V 2/v2)k′

, where k′= − 1/2.
Therefore, from a dynamical point of view, the negative exponent k′ (= − 1/2) for
the power at very low speeds (Eq. 63) is responsible for the inferior barrier of the
minimum speed V , as well as the exponent k′′ = −3/2 of the well-known relativistic
power is responsible for the top barrier of the speed of light c according to Newton
second law. Actually, due to the drastic increase of mef f of a particle moving closer
to SV , leading to its strong coupling to the vacuum field in the background frame SV ,
thus, in view of this, the dynamics of SSR states that it is impossible to decelerate a
subatomic particle until reaching the rest.

In order to see clearly both exponents k′ = −1/2 (inferior inertial barrier V ) and
k′′ = −3/2 (top inertial barrier c), let us write the general formula of power (Eq. 62)
in the following alternative way after some algebraic manipulations on it, namely:

Pow =
(

1 − V 2

v2

)k′ (
1 − v2

c2

)k′′ (
1 − V 2

c2

)
d Ek

dt
, (64)

where k′ = −1/2 and k′′ = −3/2. Now it is easy to see that, if v ≈ V or even
v << c, Eq. (64) recovers the approximation in Eq. (63). As V << c, the ratio V 2/c2

in Eq. (64) is a very small dimensionless constant. So it could be neglected.
From Eq. (64) we get the effective inertial mass mef f of SSR, namely:

mef f = m0

(
1 − V 2

v2

)− 1
2
(

1 − v2

c2

)− 3
2
(

1 − V 2

c2

)
(65)

We must stress that mef f in Eq. (65) is a longitudinal mass mL . The problem of
mass anisotropy will be treated elsewhere, where we will intend to show that, just for
the approximation v ≈ V , the effective inertial mass becomes practically isotropic,

that is to say mL ≈ mT ≈ m0

(
1 − V 2

v2

)−1/2
. This important result will show us the
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isotropic aspect of the vacuum-SV , so that the inferior barrier V has the same behavior
of response (k′ = −1/2) of a force applied at any direction in the space, namely for
any angle between the applied force and the velocity of the particle.

We must point out the fact that mef f has nothing to do with the “relativistic mass”
(relativistic energy E in Eq. 42) in the sense that mef f is dynamically responsible for
both barriers V and c. The discrepancy between the “relativistic mass” (energy mc2 of
the particle) and such an effective inertial mass (mef f ) can be interpreted under SSR
theory, as follows: mef f is a dressed inertial mass given in response to the presence of
the vacuum-SV that works like a kind of “fluid” in which the particle m0 is immersed,
while the “relativistic mass” in SSR (Eq. 42) works like a bare inertial mass in the sense
that it is not considered to be under the dynamical influence of the “fluid” connected
to the vacuum-SV . That is the reason why the exponent k = 1/2 in Eq. (42) cannot be
used to explain the existence of an infinite barrier at V , namely the vacuum-SV barrier
is governed by the exponent k′ = −1/2 as shown in Eqs. (63), (64) and (65), which
prevents v∗(= v − V ) ≤ 0.

The difference betweeen the dressed (effective) mass and the relativistic (bare)
mass, i.e., mef f − m represents an interactive increment of mass �mi that has purely
origin from the vacuum energy of SV , mamely:

�mi = m0

⎡

⎢
⎢
⎣

(
1 − V 2

c2

)

(
1 − V 2

v2

) 1
2
(

1 − v2

c2

) 3
2

−
(

1 − V 2

v2

) 1
2

(
1 − v2

c2

) 1
2

⎤

⎥
⎥
⎦ (66)

We have �mi = mef f − m, being mef f = mdressed given in Eq. (65) and m (mr )
given in Eq. (42).

From Eq. (66), we consider the following special cases:

(a) for v ≈ c we have

�mi ≈ m0

⎡

⎣
(

1 − v2

c2

)− 3
2

−
(

1 − v2

c2

)− 1
2

⎤

⎦ (67)

As the effective inertial mass mef f (mL ) increases much faster than the bare
(relativistic) mass m (mr ) close to the speed c, there is an increment of inertial
mass �mi that dresses m in direction of its motion and it tends to be infinite when
v → c, i.e., �mi → ∞.

(b) for V << v << c (newtonian or intermediary regime) we find �mi ≈ 0, where
we simply have mef f (mdressed )≈ m ≈ m0. This is the classical approximation.

(c) for v ≈ V (close to the vacuum-SV regime), we have the following approxima-
tion:

�mi = (mdressed − m) ≈ mdressed ≈ m0√
1 − V 2

v2

, (68)

where m ≈ 0 when v ≈ V (see Eq. 42).
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Fig. 6 The graph shows us two infinite barriers at V and c, providing an aspect of symmetry of SSR. The
first barrier (V ) is exclusively due to the vacuum-SV , being interpreted as a barrier of pure vacuum energy.
In this regime we have the following approximations: mef f = mdressed ≈ �mi ≈ m0(1 − V 2/v2)−1/2

and mr ≈ m0(1 − V 2/v2)1/2 (see Fig. 4), so that mdressed → ∞ and m = mr = mbare → 0 when
v → V . The second barrier (c) is a sum (mixture) of two contributions, namely the own bare (relativistic)
mass m that increases with the factor γ = (1 − v2/c2)−1/2 (see Fig. 4) plus the interactive increment �mi
due to the vacuum energy-SV , so that mdressed = mL = m + �mi ≈ m0(1 − v2/c2)−3/2. This is a
longitudinal effect. For the transversal effect, �mi = 0 since we get mT = m. This result will be shown
elsewhere

The approximation in Eq. (68) shows that the whole dressed mass has purely origin
from the energy of vacuum-SV , with mdressed being the pure increment �mi , since
the bare (relativistic) mass m of the own particle almost vanishes in such a regime
(v ≈ V ), and thus an inertial effect only due to the vacuum (“fluid”)-SV remains. We
see that �mi → ∞ when v → V . In other words, we can interpret this infinite barrier
of vacuum-SV by considering the particle to be strongly coupled to the background
field-SV in all directions of the space. The isotropy of mef f in this regime will be
shown in detail elsewhere, being mef f = mL = mT ≈ m0(1 − V 2/v2)−1/2. In such a
regime, the particle practically loses its locality (“identity”) in the sense that it is spread
out isotropically in the whole space and it becomes strongly coupled to the vacuum
field-SV , leading to an infinite value of �mi . Such a divergence of the dressed mass
has origin from the dilation factor v(→ ∞) for this regime when v ≈ V , so that
we can rewrite Eq. (68) in the following way: �mi ≈ mdressed ≈ m0(v)1/2. That
is essentially the dynamical explanation why the particle cannot reach the rest in SSR
theory so that the background frame of the vacuum-SV becomes unattainable for any
particle at quantum level. However, in the macroscopic (classical) level, the minimum
speed V as well as the Planck constant h̄ are negligible as a good approximation,
such that the rest state is naturally recovered in spite of the subatomic particles that
constitute a body at rest are always moving, since its temperature can never reach the
absolute zero, as well as their constituent subatomic particles can never reach V .

Figure 6 shows the graph for the longitudinal effective inertial mass mef f = mL

(mdressed ) as a function of the speed v with respect to the ultra-referential SV .
Now it is important to notice that a particle moving in one spatial dimension (x) goes

only to right or to left, since the unattainable minimum limit of speed V prevents it to
reach the rest in view of the rapid increase of its dressed mass (Eq. 68). So we cannot
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stop the motion and return in the same spatial dimension x . On the other hand, in a
complementary and symmetric way to V , the limit c, which represents the temporal
aspect of the space-time, prevents to stop the marching of the time (vt = 0), and so
avoiding to come back to the past. In short, we perceive that the basic ingredient of
the space-time structure in SSR, namely the (1 + 1)D space-time, presents x and t in
equal-footing in the sense that both of them are irreversible once the particle is moving
only to right or to left. Such an equal-footing “xt” in SSR theory does not occurs in SR
theory since we can stop the spatial motion in SR (vx = 0) and after come back in x ,
but not in the time t . However, if we take into account more than one spatial dimension
in SSR theory, at least two spatial dimensions (xy), thus the particle could return by
moving in the additional dimension(s) y (and/or z). So, SSR theory is able to provide
the reason why we must have more than one (1) spatial dimension for representing
movement in reality (3+1)D, although we could have only one (1) spatial dimension
just as a good practical approximation for the case of classical space-time as in SR
theory (e.g.:a ball moving in a rectilinear path).

6 Cosmological implications

6.1 Energy-momentum tensor in the presence of the ultra-referential-SV

Let us rewrite the 4-velocity (Eq. 39) in the following alternative way:

Uμ =
⎡

⎣

√
1 − V 2

v2
√

1 − v2

c2

,
vα

√
1 − V 2

v2

c
√

1 − v2

c2

⎤

⎦ =
[
U 0, Uα

]
, (69)

where now we have μ = 0, 1, 2, 3 and α = 1, 2, 3. If V → 0, we recover the
4-velocity of SR.

The well-known energy-momentum tensor to deal with perfect fluid is of the form

T μν = (p + ε)UμU ν − pgμν, (70)

where Uμ is given in Eq. (69). p represents a pressure and ε an energy density.
From Eqs. (69) and (70), by performing the new component T 00, we obtain

T 00 = ε(1 − V 2

v2 ) + p( v2

c2 − V 2

v2 )

(1 − v2

c2 )
(71)

If V → 0, we recover the old component T 00.
Now, as we are interested only in obtaining T 00 in absence of matter, i.e., the

vacuum limit connected to the ultra-referential SV , we perform the limit of Eq. (71)
as follows:
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limv→V T 00 = T 00
vacuum = p( V 2

c2 − 1)

(1 − V 2

c2 )
= −p. (72)

From Eq. (71), we notice that the term εγ 2(1− V 2/v2) for representing matter nat-
urally vanishes in the limit of vacuum-SV (v → V ), and therefore just the contribution
of vacuum prevails. As we always must have T 00 > 0, we get p < 0 in Eq. (72). This
implies a negative pressure for vacuum energy density of the ultra-referential SV . So
we verify that a negative pressure emerges naturally from such a new tensor in the
limit of SV .

We can obtain T μν
vacuum by calculating the limit of vacuum-SV for Eq. (70), by

considering Eq. (69), as follows:

T μν
vacuum = limv→V T μν = −pgμν, (73)

where we conclude that ε = −p. In Eq. (69), we see that the new 4-velocity vanishes
in the limit of the vacuum-SV (v → V ), namely Uμ

vac. = (0, 0). So, T μν
vac. is in fact a

diagonalized tensor as we hope to be. The vacuum-SV that is inherent to such a space-
time with an invariant minimum speed works like a sui generis fluid in equilibrium
with negative pressure, leading to a cosmological anti-gravity, i.e., the invariant mini-
mum speed connected to a universal background field in the preferred frame SV leads
naturally to the well-known equation of state of the cosmological constant p = wε,
with w = −1 [34–37].

6.2 The cosmological constant � and the vacuum energy density ρ

The well-known relation [34–37] between the cosmological constant � and the vac-
uum energy density ρ(�) is

ρ(�) = �c2

8πG
(74)

Let us consider a spherical universe with Hubble radius filled by a uniform vacuum
energy density. On the surface of such a sphere (frontier of the observable universe),
the bodies (galaxies) experience an accelerated expansion (anti-gravity) due to the
whole “dark mass (energy)” of vacuum inside the sphere. So we could think that
each galaxy is a proof body interacting with that big sphere like in the simple case of
two bodies interaction. However, we need to show that there is an anti-gravitational
interaction between the ordinary proof mass m and the big sphere with a “dark mass”
of vacuum (M�), but let us first start from the well-known simple model of a massive
proof particle m0 that escapes from a classical gravitational potential φ on the surface
of a big sphere of matter, namely E = m0c2(1 − v2/c2)−1/2 ≡ m0c2(1 + φ/c2),
where E is its relativistic energy. Here the interval of escape velocity 0 ≤ v < c is
associated with the interval of potential 0 ≤ φ < ∞, where we stipulate φ > 0 to be
the attractive (classical) gravitational potential.



CBPF-NF-016/15  31

Now we can show that the influence of the background field (vacuum energy inside
the sphere) connected to the ultra-referential SV (see Eq. 72) leads to a strong repulsive
(negative) gravitational potential (φ << 0) for very low energies (E → 0). In order to
see this non-classical aspect of gravitation [26], we use Eq. (42) just taking into account
the new approximation given for very low energies (v(≈ V ) << c), as follows:

E ≈ θm0c2 = m0c2

√

1 − V 2

v2 ≡ m0c2
(

1 + φ

c2

)
, (75)

where φ < 0 (repulsive). For v → V , this implies E → 0, which leads to φ → −c2.
So, the non-classical (most repulsive) minimum potential φ(V )(= −c2) connected to
vacuum-SV is responsible for the cosmological anti-gravity (see also Eqs. 72 and 73).
We interpret this result assuming that only an exotic “particle” of the vacuum energy
at SV could escape from the anti-gravity (φ = −c2) generated by the vacuum energy
inside the sphere (consider v = V in Eq. 75). Therefore, ordinary bodies like galaxies
and any matter on the surface of such a sphere cannot escape from its anti-gravity,
being accelerated far away.

According to Eq. (75), we should note that such an exotic “particle” of vacuum (at
SV ) has an infinite mass m since we should consider v = V (θ = 0) in order to have a
finite value of E , other than the photon (v = c), that is a massless particle (see Eq. 42).
So we conclude that an exotic “particle” of vacuum works like a counterparty of the
photon, namely an infinitely massive boson.

We consider that the most negative (repulsive) potential (φ = −c2 for v = V , in
Eq. 75) is related to the cosmological constant (vacuum energy density), since we have
shown in Eqs. (72) and (73) that the background reference frame SV plays the role of
the vacuum energy density with a negative pressure, working like the cosmological
constant � (p = −ε = −ρ(�)). So we write

φ� = φ(�) = φ(V ) = −c2 (76)

Let us consider the simple model of spherical universe with a radius Ru , being
filled by a uniform vacuum energy density ρ(�), so that the total vacuum energy inside
the sphere E� = ρ(�)Vu = −pVu = M�c2. Vu is its volume and M� is the total
dark mass associated with the dark energy for � (vacuum energy: w = −1 [34–37]).
Therefore the repulsive gravitational potential on the surface of such a sphere is

φ� = −G M�

Ru
= −Gρ(�)Vu

Ruc2 = 4πGpR2
u

3c2 , (77)

where p = −ρ(�), with w = −1 [34–37].
By introducing Eq. (74) into Eq. (77), we find

φ� = φ(�) = −�R2
u

6
(78)
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Finally, by comparing Eq. (78) with Eq. (76), we extract

� = 6c2

R2
u

, (79)

where �Su = 24πc2, Su = 4π R2
u .

And, by comparing Eq. (77) with Eq. (76), we have

ρ(�) = −p = 3c4

4πG R2
u
, (80)

where ρ(�)Su = 3c4/G. We can verify that Eqs. (80) and (79) satisfy Eq. (74).
In Eq. (79), � is a kind of cosmological scalar field, extending the old con-

cept of Einstein about the cosmological constant for stationary universe. From
Eq. (79), by considering the Hubble radius, with Ru = RH0 ∼ 1026m, we obtain
� = �0 ∼ (1017m2s−2/1052m2) ∼ 10−35s−2. To be more accurate, we know
the age of the universe T0 = 13.7 Gyr, being RH0 = cT0 ≈ 1.3 × 1026m,
which leads to �0 ≈ 3 × 10−35s−2. It is interesting to notice that this tiny posi-
tive value is in agreement with the observational data [27–31]. The vacuum energy
density [32,33] given in Eq. (80) for RH0 is ρ(�0) ≈ 2 × 10−29g/cm3, which
is also in agreement with observations. For the scale of the Planck length, where
Ru = lP = (Gh̄/c3)1/2, from Eq. (79) we find � = �P = 6c5/Gh̄ ∼ 1087s−2,
and from Eq. (80), ρ(�) = ρ(�P ) = T 00

vac.P = �P c2/8πG = 3c7/4πG2h̄ ∼
10113 J/m3(= 3c4/4πl2

P G ∼ 1043kg f/SP ∼ 10108atm ∼ 1093g/cm3). So, just
at that past time, �P or ρ(�P ) played the role of an inflationary vacuum field with 122
orders of magnitude [34–37] beyond the ones (�0 and ρ(�0)) for the present time.

It must be stressed that our assumption for obtaining the tiny value of �0 starts
from first principles related to a new symmetry in spacetime, i.e., we have introduced
the idea of a background reference frame SV for representing the vacuum energy
connected to an invariant minimum speed V , leading to the cosmological constant.

Here it should be also emphasized that both the cosmological constant and the
minimum speed have non-zero values due to the same cause, which is essentially the
existence of a fundamental state of vacuum with non-zero (very low) energy density,
given by the potential −c2 in Eq. (76). This means that the non-zero value of the
cosmological constant �0(∼ 10−35s−2) has origin in the fact that there must be also a
non-zero value of a minimum speed V at subatomic level; however this does not mean
that the value of V should be obtained directly as a function of �, since we just know
that V (> 0) and �(> 0) are different aspects of the same reality, i.e., the existence of
a non-null energy density of vacuum. In any way, a deeper investigation of the origin
of the minimum speed V by obtaining its value should be important in order to clarify
further this question.

7 Conclusion and prospects

The very high values obtained for the cosmological constant and the vacuum energy
density by means of the quantum field theory for the quantum vacuum have a discrep-
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ancy of about 120 orders of magnitude beyond their observational values. This puzzle
is well-known as the “Cosmological Constant Problem”, [34–37]. The idea of an
invariant minimum speed V connected to a background field for the ultra-referential
SV , within an extended structure of spacetime by breaking down Lorentz symmetry,
has led to low values of the vacuum energy density and the cosmological constant in
agreement with observational results of Perlmutter, Schmidt and Riess.

After investigating the origin of the minimum speed V and a possible connection
between V and the zero-point energy of the quantum mechanics (the uncertainty
principle), we should thoroughly explore many interesting consequences of SSR and
its new dispersion relation in quantum field theories (QFT), since the existence of a
mimimum speed for lower energies with the same status of the speed of light for higher
energies leads to a new metric for describing such deformed (symmetric) spacetime,
allowing us to build a modified QFT, where the Lorentz symmetry is broken down.
This kind of metric (v)gμν in Eq. (31) is a special case of metric that has already
been explored in the literature and it seems to lead to the Finsler’s geometry, namely a
Finslerian space with a metric that depends on the position and also the velocity, i.e.,
Gμν(x, ẋ) [38–40].
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