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We present a current algebra for the two-site Bose-Hubbard model and use it to get the quantum
dynamics of the currents. For different choices of the Hamiltonian parameters we get different
currents dynamics. We generalize the Heisenberg equation of motion to write the second derivative
of an operator.
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Introduction - Since the first experimental verification
of the Bose-Einstein condensation (BEC) [1–3], occurred
more then seven decades after its theoretical prediction
[4, 5], a great effort in the theoretical and experimen-
tal viewpoint has been made in the study of this quan-
tum many body physical phenomenon [6–14]. The early
experimental realization of a two-well BEC condensate
was made only two years after the experimental verifica-
tion of the BEC to study the interference between two
freely expanding condensates [15, 16], and their results
had direct implications in the study of the atom laser
and the Josephson effect [17, 18] for BEC. Some mod-
els were used to study some behaviors of these systems
as for example the quantum phase transitions, the clas-
sical analysis and the quantum dynamics [19–22]. We
are considering here the two-site Bose-Hubbard model,
also known as the canonical Josephson Hamiltonian [8],
that has been an useful model in understanding tunnel-
ing phenomena using two BEC [23–29]. This model is
integrable in the sense that it can be solved by the quan-
tum inverse scattering method (QISM) [30–40] and it has
been discussed in different ways using this method [32–
39]. In this context this model is a particular case of
the bosonic multi-state model studied in [41]. The ex-
perimental quantum dynamics and the classical analysis
of this model was performed by [42–44]. In this letter
we will discuss the current algebra for the two-site Bose-
Hubbard model and use it to study the quantum dynam-
ics of the currents. This method can be applied to many
systems that present microscopic tunneling phenomenon.
The model is described by the Hamiltonian

Ĥ =
K

8
(N̂1 − N̂2)

2 − ∆µ

2
(N̂1 − N̂2)−

EJ
2
(â†1â2 + â†2â1),

(1)

where â†1, â
†
2, denote the single-particle creation boson

operators in the two wells and N̂1 = â†1â1, N̂2 = â†2â2, are
the corresponding number of particles boson operators.
These bosons operators satisfies the canonical commuta-
tion relations

[âi, â
†
j ] = δij Î , [âi, âj] = [â†i , â

†
j] = 0, (2)

and

[N̂i, âj] = −δij âj , [N̂i, â
†
j ] = +δij â

†
j , (3)

where Î is the identity operator.
The coupling K provides the strength of the s-wave

scattering interaction between the bosons, ∆µ is the ex-
ternal potential and EJ is the amplitude of tunneling.
Symmetries - The Hamiltonian (1) is invariant under

the Z2 mirror transformation âj → −âj , â
†
j → −â†j, and

under the global U(1) gauge transformation âj → eiαâj ,

where α is an arbitrary c-number and â†j → e−iαâ†j , j =
1, 2. For α = π we get again the Z2 symmetry. The global
U(1) gauge invariance is associated with the conservation
of the total number of atoms N̂ = N̂1 + N̂2 and the
Z2 symmetry is associated with the parity of the wave
function by the relation

P̂ |Ψ〉 = (−1)N |Ψ〉, (4)

|Ψ〉 =
N
∑

n=0

Cn,N−n

(a†1)
n

√
n!

(a†2)
N−n

√

(N − n)!
|0, 0〉, (5)

where P̂ is the parity operator and [Ĥ, P̂ ] = 0.
There is also the permutation symmetry of the atoms

of the two wells if we have ∆µ = 0 and when we turn
on ∆µ we break the symmetry. The wave function (5) is
symmetric under this permutation

P̂ |Ψ〉 =
N
∑

n=0

CN−n,n

(a†1)
N−n

√

(N − n)!

(a†2)
n

√
n!

|0, 0〉 = |Ψ〉, (6)

where P̂ is the permutation operator and [Ĥ, P̂ ] = 0 if
∆µ = 0 [32].
In the antisymmetric case ∆µ 6= 0 we can change the

bias of one well. In this case it is called a tilted two-well
potential [27, 45]. In the Fig. 1 we represent the two
BEC by a two-well potential for the case ∆µ 6= 0. We
get the two-site Bose-Hubbard model when we consider
each BEC as a site.
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FIG. 1. A two-well potential representation of the two-site
Bose-Hubbard model for the case ∆µ 6= 0 and barrier height
V0. We are considering one condensate for each well.

Current Algebra - The total particles number boson
operator, N̂ = N̂1 + N̂2, is a conserved quantity and it
is commutable compatible operator (CCO) with the par-
ticles number boson operators in each well, [N̂ , N̂1] =
[N̂ , N̂2] = [N̂1, N̂2] = 0. The number of particles boson
operators in each well don’t commute with the Hamilto-
nian and their time evolution is dictated by the Josephson
tunneling current operator,

Ĵ =
1

2i
(â†1â2 − â†2â1) (7)

in coherent opposite phases because of the conservancy
of N̂ , with

[Ĥ, N̂1] = +iεJĴ , [Ĥ, N̂2] = −iεJĴ , (8)

and

dN̂1

dt
= −EJ

~
Ĵ , (9)

dN̂2

dt
= +

EJ
~
Ĵ . (10)

Here it is worth to note that the two BEC are entangled
by the tunneling of the particles and we can study the
quantum phase transition of the system using tools of the
quantum information [20, 21].
The tunneling current Ĵ together with the imbalance

current Î,

Î =
1

2
(N̂1 − N̂2), (11)

and the coherent correlation tunneling current operator
T̂ ,

T̂ =
1

2
(â†1â2 + â†2â1), (12)

span the current algebra

[T̂ , Ĵ ] = +iÎ, [T̂ , Î] = −iĴ , [Ĵ , Î] = +iT̂ . (13)

With the identification L̂x ≡ ~T̂ , L̂y ≡ ~Ĵ , and L̂z ≡ ~Î
we can write (13) in the standard compact way of the
momentum angular algebra

[L̂k, L̂l] = i~εklmL̂m. (14)

We have two Casimir operators for that current alge-
bra. One of them is the total number of particles N̂ ,
related to the U(1) symmetry

Ĉ1 = N̂ , (15)

and the another one is related to the momentum angular
algebra and the O(3) symmetry

Ĉ2 = T̂ 2 + Î2 + Ĵ 2. (16)

We can show that Ĉ2 is just a function of Ĉ1

Ĉ2 =
Ĉ1

2

(

Ĉ1

2
+ 1

)

. (17)

The Casimir operators (15) and (16), the boson number
of particles in each well N̂1, N̂2, and the imbalance cur-
rent operator, Î, are CCO and so they have the same set
of eigenfunctions and can simultaneous have well-defined
values

Ĉ2|n1, n2〉 =
N

2

(

N

2
+ 1

)

|n1, n2〉, (18)

Î|n1, n2〉 =
1

2
(n1 − n2) |n1, n2〉. (19)

Using the commutation relations of the currents (13)
it is easy to calculate the anticommutators

[T̂ , Î]+ = 2ÎT̂ − iĴ , (20)

[T̂ , Ĵ ]+ = 2Ĵ T̂ + iÎ, (21)

[Ĵ , Î]+ = 2ÎĴ + iT̂ . (22)

We will use these anticommutators together with the
commutators (13) in the calculus of the currents quan-
tum dynamics.
Current Quantum Dynamics - We can rewrite the

Hamiltonian (1) using the currents operators

Ĥ =
K

2
Î2 −∆µÎ − EJ T̂ . (23)

The quantum dynamic of the currents are determined
by the current algebra (13), their commutation relations
with the Hamiltonian and the parameters. If the Hamil-
tonian is not explicitly time-dependent it is not time-

dependent, dĤ
dt

= ∂Ĥ
∂t

= 0, and the system is closed (con-
servative). It is also important to note that the Hamil-
tonian is the same in the Heisenberg and Schrödinger
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pictures, ĤH = ĤS . Using this fact we can write the
second derivative of the average value of an operator Ô
in the Heisenberg picture as

d2Ô

dt2
=

(

i

~

)2

[Ĥ, [Ĥ, Ô]], (24)

or as

d2Ô

dt2
=

i

~
[Ĥ,

dÔ

dt
]. (25)

It is direct to generalize the Eqs. (24) and (25) for
higher derivatives. We can get similar equation in the

another pictures. The pictures preserve the commutation
relations between the operators in the sense that if we
have [ÂS , B̂S ] = ĈS in the Schrödinger picture we get
the same relation in the Heisenberg picture, [ÂH , B̂H ] =
ĈH , and in the interaction picture, [ÂI , B̂I ] = ĈI . The
same is true for the anticommutators, and so the pictures
preserve the algebra. We can see from Eqs. (23) and
(24) that the Casimir operators (15) and (16) are also
conserved quantities, [Ĥ, Ĉ1] = [Ĥ, Ĉ2] = 0. Using the
Eq. (24) or (25) we found the following equations for the
quantum dynamics of the three currents

d2Î
dt2

+
(εJ)

2

~2
Î = −εJK

~2
ÎT̂ +

εJ∆µ

~2
T̂ + i

εJK

2~2
Ĵ , (26)

d2Ĵ
dt2

+
1

~2

[

(∆µ)2 + (εJ)
2 +

K2

4

]

Ĵ = −K2

~2
Î2Ĵ − i

K2

~2
ÎT̂ + 2

K∆µ

~2
ÎĴ − KεJ

~2
Ĵ T̂

+ i
K∆µ

~2
T̂ − i

2

KεJ
~2

Î, (27)

d2T̂
dt2

+
1

~2

[

(∆µ)2 +
K2

4

]

T̂ = −K2

~2
Î2T̂ + i

K2

~2
ÎĴ + 2

K∆µ

~2
ÎT̂

− KεJ
~2

Î2 +
KεJ
~2

Ĵ 2 +
∆µεJ
~2

Î − i
K∆µ

~2
Ĵ . (28)

We can see from the Eqs. (26), (27) and (28) that
a complete analysis with all Hamiltonian’s parameters
is very complicated because the currents are coupled on
the right hand side of these equations. To simplify our
analysis we will make some choices of the parameters.
Different choices of the ratio between the Hamiltonian’s
parameters gives us different dynamics for the currents.
We will consider two simple cases in the Rabi regime,
K/EJ ≪ N−2 [8, 25, 37]. Consequently, in the extreme
Rabi regime we can neglect K and consider the no inter-
action limit K → 0.
In the first analysis we will consider the symmetric

case, ∆µ = 0. For this case the current T̂ is a conserved
quantity, [Ĥ, T̂ ] = 0, but this don’t means that we don’t
have tunneling. We can see from Eqs. (9) and (10) that
the quantum dynamic of N̂1, N̂2, and Î only depend of
the current Ĵ and the amplitude of tunneling EJ . The
current dynamics for these currents are the dynamic of
the simple harmonic oscillator (SHO)

d2Î
dt2

+ ω2
I Î = 0, (29)

d2Ĵ
dt2

+ ω2
J Ĵ = 0, (30)

where ωI = ωJ = EJ

~
is the natural frequency of the

SHO. The period of the oscillations is T = 2π~
EJ

. In anal-
ogy with the classical SHO, the ratio between the elastic

constant K and the mass m is K
m

=
E2

J

~2 .
In the second analysis we will break the symmetry,

∆µ 6= 0, to consider the antisymmetric case. For this
case the currents dynamics are

d2Î
dt2

+

(EJ
~

)2

Î =
EJ∆µ

~2
T̂ , (31)

d2T̂
dt2

+

(

∆µ

~

)2

T̂ =
EJ∆µ

~2
Î, (32)

d2Ĵ
dt2

+
(∆µ)2 + E2

J

~2
Ĵ = 0. (33)

The Eq. (31) is a linear inhomogeneous equation similar
to a classical undumped forced (driven) SHO with natu-
ral frequency of the SHO ωI = EJ/~, external force T̂ ,
mass m = ~

2/EJ∆µ, elastic constant K = EJ/∆µ and
period of the free oscillations T = 2π~

EJ

. The Eq. (32) is
similar to the Eq. (31) when we exchange the currents
and the parameter ∆µ by EJ . The Eq. (33) describes a
SHO with natural frequency ωJ =

√

(∆µ)2 + E2
J/~ and
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period of the oscillations T = 2π~√
(∆µ)2+E2

J

. We have two

possible dynamics for this case.
Summary - We have showed that a current algebra ap-

pears when we calculate the quantum dynamics of the
tunneling of the atoms. We generalize the Heisenberg
equation to write the second derivative of an operator.
Then we calculated the quantum dynamics of these cur-
rents and show that different dynamics appear when we
consider different choices of the parameters of the Hamil-
tonian. The strength of the parameter K determines the
non linearity of the currents dynamics. For specific choice
of the parameter we get analogue equations to the classi-
cal simple harmonic oscillator and the undumped forced
(driven) simple harmonic oscillator with the natural fre-
quencies dependent of the parameters of the Hamilto-
nian.
The author acknowledge Capes/FAPERJ (Coor-
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