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Abstrat

We investigate an integrable Hamiltonian modelling a hetero-triatomi-moleular

Bose-Einstein ondensate. This model desribes a mixture of two speies of atoms

in di�erent proportions, whih an ombine to form a triatomi moleule. Beginning

with a lassial analysis, we determine the �xed points of the system. Bifurations

of these points separate the parameter spae into di�erent regions. Three distint

senarios are found, varying with the atomi population imbalane. This result

suggests the ground state properties of the quantum model exhibits a sensitivity on

the atomi population imbalane, whih is on�rmed by a quantum analysis using

di�erent approahes, suh as the ground-state expetation values, the behaviour of

the quantum dynamis, the energy gap and the ground state �delity.

PACS: 02.30.Ik, 03.65.Sq, 03.75.Nt
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1 Introdution

The experimental ahievement that led to the Bose-Einstein ondensates (BECs), using

dilute alkali gases at ultraold temperatures [1, 2℄, indued a substantial e�ort dediated

to the understanding of new properties of BECs. In partiular, the development of the

tehniques used in the prodution and manipulation of ultraold atoms and moleules [3℄

has opened the way to a new �eld, the "hemistry" of ultraold systems, i.e where the

atomi onstituents of the dilute gas may reombine forming moleules. Suh moleular

BEC ompounds have been obtained by di�erent tehniques [4℄, for instane, by Feshbah

resonanes [5�7℄ or photoassoiation [8℄. There an also our atom-moleule interations

that must be at least three-body in nature [9℄, bringing up new stimulus and hallenges to

our physial understanding. Experimental evidenes for three-body reombinations [10℄

as well as for E�mov states [11℄ provide a physial ground and stimulus for the searh of

triatomi moleular BECs and for the investigation of their theoretial aspets, whih is

our main interest.

>From the theoretial point of view, ultraold atomi and moleular systems are

haraterized by their large quantum �utuations. In this sense, it beomes relevant the

searh for exatly solvable models desribing atomi and moleular BEC. Indeed this

has beome a very ative �eld of researh [12�20℄, and the experimental relevane of

these models is urrently a very ative researh subjet [21℄. Those solvable models are

expeted to provide a signi�ant impat in this area, a view that has been promoted

in [22, 23℄. Inreasing evidene and reent results show that multi-atomi systems may

be interesting and relevant for ultraold atomi-moleular in Bose-Einstein ondensates.

A signi�ant question in this ontext is whether more omplex ultraold moleules ould

be reated than simple dimers [24℄. Also, due to the more sophistiated nature of the

ontrol of the interatomi interations, in the ase of triatomi moleules, one expets

a rih quantum phase struture. Indeed, very reent experimental results on�rm the

existene of heteroatomi bosoni trimers in ultraold mixtures [25℄ whih provide us

with additional motivation to pursue the present investigation.

In this paper we analyze an integrable model desribing a hetero-triatomi moleular

Bose-Einstein ondensate where atomi BECs an ombine (in di�erent proportions) to

produe a ompound with two atoms of the same kind and a third one of a di�erent

speies. Our model, that has been shown to be solvable in [26℄, inludes besides the

interonversion of atoms to moleules and vie-versa, a linear interation orresponding

as the external potential and a bilinear interation orresponding the sattering between

atoms-atoms, atoms-moleules and moleules-moleules. We start our analysis of this

model by a lassial treatment where we obtain its phase spae determining in partiular

the �xed points. We �nd that for ertain oupling parameters bifuration of the �xed

points ours, and we an determine a parameter spae diagram whih lassi�es the

found �xed points. This diagram is determined for the imbalane of the number of atoms

whih allows us to lassify it in three distint ases. Spei�ally, when the imbalane is

equal zero or negative there is a spontaneous appearane of additional boundaries in the

parameter spae (three for the zero ase and two for the negative ase), some of whih

an be identi�ed with bifurations of the minimum of the lassial Hamiltonian. We also

perform a quantum analysis, where we study the quantum dynamis and ompare with
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the lassial results. Here we are interested in studying the ground state of the model,

beause as atual systems are in ultraold temperature some insight an be obtained

from the ground state. Furthermore as pointed out before the presene of large quantum

�utuations make it interesting to look for the phase struture at zero temperature, the

quantum phase transitions. In our ase we are able to look for signatures of quantum phase

transition. Here we use two de�nitions, energy gap and ground state �delity in order to

�nd a quantum phase pre-transition, a term that will be explained later. We observe that

the ritial points are pinning down in ompletely agreement with the lassial analysis.

The paper is organized as follows. In setion 2 we present our integrable model.

Setion 3 is devoted to the lassial analysis where the parameter diagram are obtained.

Setion 4 is devoted to the quantum analysis where we show the quantum dynamis and

a study about quantum phase pre-transition. Setion 5 is devoted to our onlusions.

2 The model

Let us onsider the following Hamiltonian desribing a hetero-triatomi-moleular Bose-

Einstein ondensate with two idential speies of atoms, denoted by a whih an be

ombined to a di�erent type of atom, denoted by b, to produe a moleule labelled by c.
In terms of anonial reation and annihilation operators {a, b, c, a†, b†, c†} satisfying the

usual ommutation relations [a, a†] = I, et., the Hamiltonian reads

H = UaaN
2
a + UbbN

2
b + UccN

2
c + UabNaNb + UacNaNc + UbcNbNc + (1)

+µaNa + µbNb + µcNc + Ω(a†a†b†c + c†baa).

The parameters Uij desribe S-wave sattering, µi are external potentials and Ω is the

amplitude for interonversion of atoms and moleules. Ni are the number operators, i.e

Na = a†a is the number of atoms type a, Nb = b†b is the number of atoms type b and

Nc = c†c is the number of moleules.

The Hamiltonian ats on the Fok spae spanned by the (unnormalized) vetors

|Na; Nb; Nc〉 = (a†)Na(b†)Nb(c†)Nc|0〉, (2)

where |0〉 is Fo k vauum.

The Hamiltonian above has two independent onserved quantities

N = Na + Nb + 3Nc, J = Na − 2Nb,

where N is the total number of atoms and J is the atomi imbalane. It is onvenient to

introdue k = J/N , as the frational atomi imbalane. Sine there are three degrees of

freedom and three onserved quantities, the model is integrable. More details about the

integrability of this model, using the Bethe ansatz method, an be found in [26℄. In what

follows we will investigate this model in detail. Below we begin with a lassial analysis

of the model and determine the �xed points of the system.
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3 Classial analysis

Let Nj, θj , j = a, b, c, be quantum variables satisfying the anonial relations

[θj , θk] = [Nj, Nk] = 0, [Nj , θk] = iδjkI.

We make a hange of variables from the operators j, j†, j = a, b, c, to a number-phase

representation through

j = exp(iθj)
√

Nj , j = a, b, c,

suh that the anonial ommutation relations are preserved. We perform an additional

hange of variables

z =
1

N
(Na + Nb − 3Nc),

θ =
N

6
(2θa + θb − θc),

suh that z and θ are anonially onjugate variables; i.e.

[z, θ] = iI.

In the limit of large N we an approximate the (resaled) Hamiltonian by

H =
4ΩN2

36
[λz2 + 2(α − λ)z + β + (z + c+)

√

(z + c−)(1 − z) cos(
6θ

N
)], (3)

where we have de�ned

λ = ∆(4Ua + Ub + Uc + 2Uab − 2Uac − Ubc),

α = ∆[4(c+ + 1)Ua + (c− + 1)Ub + (c+ + c− + 2)Uab − (1 + c+)Uac − (1 + c−)
Ubc

2

+
3

N
(2µa + µb − µc)],

β = ∆[4Uac
2
+ + Ubc

2
− + Uc + 2Uabc+c− + 2Uacc+ + Ubcc−

+
6

N
(2µac+ + µbc− + µc)],

with

c− = 1 − 2k, c+ = 1 + k, ∆ =
1

4Ω
,

k =
J

N
, k ∈ [−2, 1].

We now regard (3) as a lassial Hamiltonian and investigate the �xed points of the

system. The �rst step is to �nd the Hamilton's equations of motion whih yields

dz

dt
=

∂H

∂θ
= −4ΩN

6
(z + c+)

√

(z + c−)(1 − z) sin

(

6θ

N

)

,

dθ

dt
= −∂H

∂z
=

4ΩN2

36
[2λz + 2(α − λ) (4)

+
2(z + c−)(1 − z) + (z + c+)(1 − z) − (z + c+)(z + c−)

2
√

(z + c−)(1 − z)
cos

(

6θ

N

)

].
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The �xed points of the system are determined by the ondition

∂H

∂θ
=

∂H

∂z
= 0. (5)

Due to periodiity of the solutions, below we restrit to θ ∈ [0, Nπ/3]. It is onvenient

to de�ne the funtions:

f(z) = λz + α − λ,

g(z) = −2(1 − z)(z + c−) + (1 − z)(z + c+) − (z + c+)(z + c−)

4
√

(1 − z)(z + c−)
.

Note that the domain of g(z) is z ∈ [−1, 1) if k ∈ [−2, 0] and z ∈ (2k − 1, 1) if k ∈ (0, 1).
We observe that the frational atomi imbalane k plays an important role in the

behaviour of the g(z) funtion. For k ≤ 0, g(z) is divergent only at z = 1, while for the
ase of k > 0, g(z) is divergent at z = 2k − 1 and z = 1. Sine k a�ets the domain and

the shape of the funtion g(z), this property will a�et the type of solutions of (5). In

Fig. 1 we illustrate the behaviour of the funtion g(z) for di�erent values of k. It is, in

fat, neessary to treat the ases of k < 0, k = 0 and k > 0 separately.

-1 -0.5 0 0.5 1
 z

-4

-2

0

2

4

 g
(z

)

 k = -1
 k = 0
 k = 0.5

Figure 1: (Color online) The behaviour of the funtion g(z) for three di�erent values of
k.

3.1 Negative ase : −2 ≤ k < 0

Here the domain of g(z) is z ∈ [−1, 1) and g(z) is divergent at z = 1, but �nite at z = −1.
This leads to the following lassi�ation for the solutions of (5):

• θ = 0 and z is a solution of
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f(z) = g(z), (6)

whih an admit zero, one or two solutions.

• θ = Nπ/6 and z is a solution of

f(z) = −g(z), (7)

whih an admit zero, one or two solutions.

• z = −c+, whih vanishes the �rst equation of (4) and redues the seond eq. of (4)

to the expression

λ =
α

k + 2
+

√

−3k(k + 2)

2(k + 2)
cos(

6θ

N
), (8)

suh that θ is a solution of

cos(
6θ

N
) = −2

√

−3k(k + 2)

3k

(

λ − α

k + 2

)

, (9)

for whih there are two solutions for |2
√

−3k(k+2)

3k

(

λ − α
k+2

)

| < 1.

3.2 Zero ase: k = 0

Now we onsider the ase k = 0, where the domain of g(z) is z ∈ (−1, 1) and g(z) is

divergent at z = 1, but �nite at z = −1, similar to the previous ase. This leads to the

following lassi�ation for the general problem:

• θ = 0 and z is a solution of

f(z) = g(z), (10)

whih an admit zero, one or two solutions.

• θ = Nπ/6 and z is a solution of

f(z) = −g(z), (11)

whih an admit zero, one or two solutions.

• z = −1, whih vanishes the �rst eq. of (4) and redues the seond eq. of (4) to the

following linear equation between the oupling parameters

λ =
α

2
, (12)

whih an admit just one solution. This result is ompatible with that obtained in

the previous ase by taking the limit k → 0 in eq. (8)

6
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3.3 Positive ase: 0 < k ≤ 1

In this ase the domain of g(z) is z ∈ (2k − 1, 1) and g(z) is divergent at both extremes

of the interval, z = 2k− 1 and z = 1. Now, a di�erent senario emerges, ompared to the

previous two ases. This leads to the following lassi�ation for the general problem:

• θ = 0 and z is a solution of

f(z) = g(z), (13)

whih an admit one, two or three solutions.

• θ = Nπ/6 and z is a solution of

f(z) = −g(z), (14)

whih an admit one, two or three solutions.

We an ollet all di�erent types of solutions of eq. (5) in a parameter diagram,

dividing the parameter spae into di�erent regions, for eah ase of k disussed above.

For example, for the ase of k positive, to onstrut this diagram, we observe that the

boundaries between eah regions our when f is the tangent line to ±g; i. e. for values
of λ and α suh that

λ = ±dg

dz
|z0

,

f(z0) = ±g(z0),

for some z0. This requirement determines the boundaries in the parameter spae, whih

are depited in Fig. 2() for k = 0.5.

As in the ase of k positive, we an determine the region boundaries in the parameter

spae for the other two ases. However, beause of the existene of solutions of the form

given by (8), whih do not have an analogue for positive k, we see the appearane of

new boundaries given by the onditions λ = (α ∓ g(−k − 1))/(k + 2) for negative k and

λ = α/2 for k = 0. The boundaries in parameter spae are illustrated in Fig. 2(a) and

Fig. 2(b) for k = −1 and k = 0, respetively. Notie that the two additional boundaries,

whih delimit region C, for k = −1 are redued to a unique boundary for k = 0, whih is

not present for k = 0.5. Therefore, we have a di�erent senario for the parameter spae

diagram, depending if the frational atomi imbalane k is negative, zero or positive, as

illustrated in Fig. 2. Basially, we an summarize the typial behaviour of the parameter

spae diagram as follows: when k is negative, the parameter diagram is divided in �ve

regions: in region A there is no solution for z when θ = 0 and one solution for z when

θ = Nπ/6. In region B there are two solutions for z when θ = 0 and one solution for

z when θ = Nπ/6. In region C there is one solution for z when θ = 0, one solution for

7
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α
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λ

k= 0.5

(c)

I
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III

Figure 2: (Color online) Parameter spae diagram identifying the di�erent types of solu-

tion for eq.(5) for di�erent values of k = −1; 0; 0.5. We observe (a) �ve distint regions

for the negative ase; (b) four distint regions for k = 0; () three distint regions for the
positive ase. In (a) the boundaries are given by λ = (α ∓ g(−k − 1))/(k + 2) while in
(b) it is given by λ = α/2.

z when θ = Nπ/6 and two solutions for θ when z = −k − 1. In region D there is one

solution for z when θ = 0 and two solutions for z when θ = Nπ/6. In region E there

is one solution for z when θ = 0 and no solution for z when θ = Nπ/6. For the ase

k = 0, region C disappears and the phase diagram is left with the four regions A, B, D,

E disussed before. When k is positive the diagram is divided in three regions: in region

I there is one solution for z when θ = 0 and one solution for z when θ = Nπ/6. In region

II there are three solutions for z when θ = 0 and one solution for z when θ = Nπ/6. In
region III there is one solution for z when θ = 0 and three solutions for z when θ = Nπ/6.
It is interesting to mention that the frational atomi imbalane also plays an important

role in hetero-diatomi moleular Bose-Einstein ondensates [27�29℄.

To help visualize the lassial dynamis, it is useful to plot the level urves of the

Hamiltonian (3). Sine the �xed points hange the topology of the level urves, qualitative

di�erenes an be observed between the di�erent regions. The results are depited in Fig.

3 for k = −1 (on the left), k = 0 (in the middle) and k = 0.5 (on the right). For larity,

we use onvenient intervals for θ and z.

In Fig. 3(a) we show the level urves of the Hamiltonian (3) for k = −1, illustrating
the typial behaviour for regions A, B, C and E (from the top to the bottom). In region A

there are loal minima at 6θ/N = ±π. Besides the minima at 6θ/N = ±π, two additional
�xed points (a maximum and a saddle point) are apparent in region B ourring at θ = 0.
In region C there are minima at 6θ/N = ±π and for θ = 0 just one �xed point, a

maximum. There are also saddle points when z = 0. In region E just one �xed point, a

maximum, ours for θ = 0.
In Fig. 3(b) we show the level urves for k = 0 for the same regions illustrated in the

previous ase, exept that now instead of region C there is just one straight line separating

regions B and D. The behaviour here is analogous to the previous ase of negative k, with
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the emergene of a maximum (minimum) when passing from region A to B (E to C).

In Fig. 3() we present the level urves of the Hamiltonian (3) for k = 0.5, illustrating
the behaviour of regions I, II, III and I (from the top to the bottom). In region I there is

a maximal point at θ = 0 and a minima at 6θ/N = ±π. Two additional �xed points, a

saddle and a maximum our, in region II at θ = 0, while two additional �xed points, a

saddle and a minimum, our in region III at 6θ/N = ±π ompared to region I.

We observe that the pattern of the level urves is distint for the ases of k negative

and zero ompared to the positive ase.

In the following setions we will ondut an analysis of the quantum Hamiltonian.

We will fous our attention on the ase λ = 0, in this way the model has one e�etive

parameter, α. In partiular we will establish that the bifuration ourring at (α, λ) =
(−g(−k − 1), 0) for the negative ase and (α, λ) = (0.5, 0) for k = 0 an be seen to

in�uene the ground state properties of the quantum system.

4 Quantum analysis

We now turn our attention to a quantum treatment of the model, to investigate the nature

of the additional threshold ouplings for the ases where the frational atomi imbalane

k is negative and zero. In partiular we analyze the Hamiltonian in the no sattering limit

where Uij = 0 for all i, j = a, b, c,

H = µaNa + µbNb + µcNc + Ω(a†a†b†c + c†baa). (15)

This simpli�es substantially the Hamiltonian, however it remains su�iently non triv-

ial to enable us to gain an understanding of the quantum behaviour through the quantum

dynamis, ground-state expetation value, gap and �delity. The no sattering limit orre-

sponds to the oupling λ = 0 in the lassial analysis of setion 3. With referene to Fig.

2 there are two threshold ouplings when k is negative and three threshold ouplings for

k = 0. For the ase of k negative, one ours at (α, λ) = (−g(−k − 1), 0), signifying the

bifuration of the global minimum of the Hamiltonian, while the other ours at (α, λ) =
(g(−k−1), 0), signifying the bifuration of the global maximum. For the spei� example

of k = −1, these thresholds are (α, λ) = (0.866, 0) and (α, λ) = (−0.866, 0), respetively.
For the ase k = 0, there are three bifurations at (α, λ) = (−0.5, 0), (0, 0), (0.5, 0). The
ase (α, λ) = (−0.5, 0) signifying the bifuration of the global maximum, (α, λ) = (0.5, 0)
signifying the bifuration of the global minimum while (α, λ) = (0, 0) signifying the bifur-
ation of the saddle point. In ontrast, there are no bifurations along the line λ = 0 for

the positive ase. We fous our attention to the oupling (α, λ) = (0.866, 0) for k = −1
and (α, λ) = (0.5, 0) for k = 0, as in these ases the bifuration of the �xed point in phase

spae is assoiated with the ground state of the quantum system.

4.1 Quantum dynamis

In general the time evolution of any state is given by |Ψ(t)〉 = U(t)|φ〉, where U(t) is the
temporal operator U(t) =

∑M

m=0 |m〉〈m| exp(−iEmt), |m〉 is an eigenstate with energy

Em and |φ〉 represents the initial state with N = Na +Nb +3Nc. We adopt the method of

9
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diretly diagonalizing the Hamiltonian (15) as done in [31,32℄ and ompute the expetation

value of z(t) through.

〈z(t)〉 =
1

N
〈Ψ(t)|Na + Nb − 3Nc|Ψ(t)〉. (16)

In our analysis, for �xed total number of atoms N and �xed atomi imbalane J ,
we will use the initial state on�guration |0,−J/2, (2N + J)/6〉 for the ases where k is

negative and zero and |J, 0, (N − J)/3〉 for the ase where k is positive. We therefore

ompare the three ases of the quantum dynamis, with frational atomi imbalane

negative, zero and positive.

Results of the expetation value for z are shown in Fig. 4 for the ases of k = −1, 0
and 0.5. We are using N = 900 and J = −900; 0; 450 for k = −1; 0; 0.5, respetively. We

�x the parameter Ω = 1 and use µc as the variable oupling parameter. In terms of the

lassial variables, this orresponds to vary the parameter α. The qualitative di�erenes
are quite apparent. In the ase of k = −1, Fig. 4(a), we �nd that for α < 0.866 there are

irregular osillations in z. Similar behaviour ours for α < 0.5 for k = 0, Fig. 4(b). As
the oupling parameter α is inreased aross the threshold value at α = 0.866, for k = −1
and α = 0.5 for k = 0, the transition to loalized osillations is signi�ant in ases (a)

and (b). By omparison the dynamis in Fig. 4() for k = 0.5 show a ollapse and revival

of osillations.

4.2 Ground state expetation values

Now using the equation (16), we ompute the normalized ground-state expetation value

3〈Nc〉/N for the quantum system as the oupling is varied. Results are shown in Fig. 5.

In general, agreement with the lassial result is found: As the threshold oupling

α = 0.866 (for k = −1) and α = 0.5 (for k = 0) is rossed, the maximal possible number

of moleules that an be formed for eah ase (100% for k = −1 and 50% for k = 0) is
reahed. In both ases, there is an abrupt hange in the expetation value 3〈Nc〉/N at the

threshold point. However, for k = 0, the expetation value 3〈Nc〉/N does not exhibit any

sudden hange, indiative of the fat that there is no boundary in Fig. 2(). Therefore,

qualitative hanges are observed between the ases of k negative and zero and the ase of

k positive.

4.3 Quantum phase transitions

In order to gain a better insight into the e�et of the threshold ouplings for the quantum

system, in our �nal analysis we investigate the existene of quantum phase transitions in

our model (15).

A Quantum Phase Transition (QPT) is usually de�ned as a phase transition in the

ground-state of the system under the variation of some parameter. Basially, there is
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a sudden hange in the struture of the ground state at the QPT, and the properties

suh as entanglement, orrelations, et re�et this sudden hange [30℄. There are di�erent

methods to determine a QPT. In partiular, we will study the behaviour of the energy gap

and �delity of the system to identify a QPT. Here we mention that a QPT is rigorously

de�ned in the thermodynamial limit N → ∞. For large but �nite N the system does

display an inreasing sharp distintion between ground state regions, alled Quantum Pre-

Phase Transitions (QPPT). The ourrene of a QPPT in a �nite system is a preursor

for a QPT in the thermodynami limit. Let us now study the QPPT of the Hamiltonian

(15).

4.3.1 Energy gap

One possibility to identify a QPPT is through the energy gap, whih is de�ned as the

di�erene between the �rst exited state and the ground-state of the system.

∆E = E1 − E0.

In Fig. 6 we plot the gap against the oupling parameter α for the ases of k = −1, 0
and 0.5 using Ω = 1 and di�erent values of N . In all ases the energy gap exhibits a

minimum, whih is muh more pronouned in the ases of k negative and zero ompared

to the ase where k is positive. We observe that as long as N inreases, the point where

the gap tends to vanish orresponds to α = 0.866 for k = −1 (Fig. 6(a)) and α = 0.5 for

k = 0 (Fig. 6(b)), in agreement with the lassial analysis. In ontrast, when k is positive

there is no abrupt variation of the energy gap as shown in Fig. 6() and QPPT are not

expeted.

4.3.2 Fidelity

Another possibility to investigate the QPPT is through the behaviour of the �delity,

whih is a onept widely used in the Quantum Information Theory [33�35℄. The �delity

is basially de�ned as the modulus of the wavefuntion overlap between two quantum

states. Assuming the ground state of the system is non-degenerate, let Ψ(α) denote the
unique normalized ground state. For �xed small ∆ we de�ne the funtion �delity or

ground-state wavefuntion overlap Fid∆(α) by

Fid∆(α) = |〈Ψ(α(1 − ∆))|Ψ(α(1 + ∆))〉|,

whih is symmetri in ∆, bounded between 0 and 1 and satis�es Fid0(α) = 1. For systems

whih exhibit a quantum phase transition in the thermodynami limit, the wavefuntion

overlaps between states in di�erent phases go to zero in this limit. The ourrene of a

minimum in the ground-state wavefuntion overlap in a �nite system is then a preursor

for a quantum phase transition in the thermodynami limit. Thus for �nite systems we

identify quantum phase pre-transitions at a oupling α for whih the �delity is (loally)

minimal. Fig 7 shows the behaviour of the �delity for (a) k = −1; (b) k = 0; () k = 0.5
for �xed N(∆) and di�erent values of ∆(N) on the top (bottom). It is lear that the
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minimum value of Fid∆(α), whih determines the quantum phase pre-transition, tends

to our at α ≈ 0.86 for k = −1 and α ≈ 0.5 for k = 0. The distintion between

the predited threshold oupling and the observed pre-transition oupling is that the

pre-transition oupling also ours for k positive, although for �xed N the minimum of

Fid∆(α) is substantially more pronouned for k negative and zero ompared to k positive.

In all instanes the value of minimum dereases with inreasing N . We remark that the

value of α at whih the minimum ours is independent of ∆, as shown in Fig.7 (on the

top). In our previous lassial analysis qualitative di�erenes are only found preisely

when k is negative or zero. Here it is lear that the distinguishability of two phases is

more reliable also for k negative or zero. We then interpret these results as the emergene

of quantum phase boundaries for k negative or zero.

5 Conlusion

We have onsidered a model desribing a mixture of two speies of atoms in di�erent

proportions whih an ombine to form a bound moleular state at zero temperature.

This hetero-triatomi moleular Bose-Einstein ondensate model has been investigated in

detail through a lassial and a quantum analysis.

We have found that the frational atomi population imbalane k, an extra ontrol

"knob" harateristi to heteronulear models, plays an important role in the determi-

nation of the phase boundaries in the diagram of parameters in the lassial analysis.

This property also holds at a quantum level by inspeting the ground-state expetation

values and the harater of the quantum dynamis of the model. We have also looked

for the quantum phase pre-transitions in our system and shown that the quantities en-

ergy gap and ground state �delity are suited for revealing QPPT and pinning down the

ritial(bifuration) points.

Aknowledgements

C.C.N. K and A.F thank J. Links and E. Mattei for disussions. A. P. T., A.F., I. R. and

Z. V. S. T. would like to thank CNPq - Conselho Naional de Desenvolvimento Cientí�o

e Tenológio for �nanial support, I.R. also thanks FAPERJ - Fundação Carlos Chagas

Filho de Amparo à Pesquisa do Estado do Rio de Janeiro for �nanial support. G. S. would

like to thank CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for

�nanial support.

Referenes

[1℄ E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74 (2002) 875.

[2℄ J. R. Anglin and W. Ketterle, Nature 416, (2002) 211.

12

CBPF-NF-008/14



[3℄ D. J. Heinzen, R. Wynar, P. D. Drummond, and K. V. Kheruntsyan, Phys. Rev.

Lett. 84, (2000) 5029.

[4℄ P. Zoller, Nature 417 (2002) 493.

[5℄ S. B. Papp and C. E. Wieman, Phys. Rev. Lett. 97, (2006) 1804049.

[6℄ G. Thalhammer, G. Barontini, L.D. Sarlo, J. Catani, F. Minardi and M. Ignusio,

Phys. Rev. Lett. 100 (2008) 210402.

[7℄ J. Catani, L.D. Sarlo, G. Barontini, F. Minardi and M. Ignusio, Phys. Rev. A77

(2008) 011603(R).

[8℄ B. Damski, L. Santos, E. Tiemann, M. Lewenstein, S. Kotohigova,

P. Julienne, and P. Zoller, Phys. Rev. Lett. 90 (2003) 110401.

[9℄ J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C. Nagerl and R. Grimm,

Siene 301 (2003) 1510

[10℄ T. Weber, J. Herbig, M. Mark, H.-C. Nagerl and R. Grim, Phys. Rev. Lett. 91 (2003)

123201.

[11℄ T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange,

K. Pilh, A. Jaakkola, H.-C. Nagerl, R. Grimm, Nature 440,(2006) 315.

[12℄ H.-Q. Zhou, J. Links, M. Gould and R. MKenzie, J. Math. Phys. 44 (2003) 4690.

[13℄ J. Links, H.-Q. Zhou, R. H. MKenzie and M. D. Gould, J. Phys. A36 (2003) R63;

[14℄ H.-Q. Zhou, J. Links, R. H. MKenzie and X.-W. Guan, J. Phys. A36 (2003) L113;

[15℄ A. Foerster, J. Links, H.-Q. Zhou, in Classial and quantum nonlinear integrable

systems: theory and appliations, edited by A. Kundu (IOP Publishing, Bristol and

Philadelphia, 2003) pp. 208-233.

[16℄ J. Dukelsky, G. Dussel, C. Esebbag and S. Pittel, Phys. Rev. Lett. 93 (2004) 050403

[17℄ G. Ortiz, R. Somma, J. Dukelsky and S. Rombouls, Nulear Physis B707 (2005)

421.

[18℄ A. Kundu, Theoretial and Mathematial Physis 151 (2007) 831.

[19℄ A. Foerster and E. Ragouy, Nulear Physis B777 (2007) 373.

[20℄ J. Li, D.-F. Ye, C. Ma, L.-B. Fu and J. Liu, arXiv:0807.1691.

[21℄ X-J. Liu, H. Hui, P.D. Drummond, Phys. Rev. A77 (2008) 013622.

[22℄ M. Héritier, Nature 414 (2001) 31.

[23℄ M. T. Bathelor, Physis Today 60 (2007) 36.

13

CBPF-NF-008/14

http://arxiv.org/abs/0807.1691


[24℄ F. Ferlaino, S. Knoop and R. Grimm, arXiv:0809.3920.

[25℄ J. Catani, Private ommuniation related to work in ollaboration with G. Barontini,

F. Rabati, G. Talhammer, C. Weber, F. Minardi and M. Ingusio.

[26℄ G. Santos, A. Foerster, I. Roditi, Z. Santos and A. Tonel, J. Phys. A: Math. Theor.

41 (2008) 295003.

[27℄ M. Dunan, A. Foerster, J. Links, E. Mattei, N. Oelkers and A. Tonel, Nulear Phys.

B767 (2007) 227.

[28℄ L. Zhou, J. Qian, H. Pu, W. Zhang and H. Y. Ling, arXiv:0809.0040.

[29℄ L. Zhou, W. Zhang and H. Y. Ling, L. Jiang and H. Pu , Phys. Rev. A75 (2007)

043603.

[30℄ S. Sadhev, Quantum Phase Transitions, Cambridge University Press (2001)

[31℄ A. P. Tonel, J. Links and A. Foerster, J. Phys. A: Math. Gen. 38, (2005) 1235.

[32℄ A. P. Tonel, J. Links, and A. Foerster, J. Phys. A: Math. Gen. 38, (2005) 6879.

[33℄ M.A. Nielsen and I.L.Chuang, Quantum omputation and quantum information,

Cambridge University Press (2000)

[34℄ H-Q. Zhou and J. P. Barjaktarevi, ond-mat/0701608.

[35℄ P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98 (2007) 110601

14

CBPF-NF-008/14

http://arxiv.org/abs/0809.3920
http://arxiv.org/abs/0809.0040
http://arxiv.org/abs/cond-mat/0701608


(a) k = −1 (b) k = 0 (c) k = 0.5

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

-1 -0.5 0 0.5 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

-1 -0.5 0 0.5 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

-1 -0.5 0 0.5 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

-1 -0.5 0 0.5 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

0 0.2 0.4 0.6 0.8 1
Z

-Π

0

Π

6
Θ
�
N

-Π

0

Π

Figure 3: Level urves for the Hamiltonian (3), where the dark regions indi-

ate lower values than the light regions. Here we are using for: (a) k = −1
on the left (λ, α) = (0;−1.0), (5; 2.5), (0, 0) and (0, 1.5); (b) k = 0 in the mid-

dle (λ, α) = (0,−1), (2.5, 2.5), (0; 0) and (0, 1.5);() k = 0.5 on the right (λ, α) =
(0;−1.5), (5, 2.5), (−5,−2.5) and (0, 1.5).
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Figure 4: Time evolution of the expetation value of z for the Hamiltonian (15) with

N = 900, for (a) k = −1 and initial state |0, 450, 150〉. We are using natural units. The

osillations are largely irregular with signi�antly dereasing amplitude as the point at α =
0.866 is rossed. This point orresponds to the boundary at (α, λ) = (0.866, 0) between
regions C and E as shown in Fig. 2(a); (b) k = 0 and initial state |0, 0, 300〉. A similar

behaviour ours as the point at α = 0.5 is rossed. This point orrespond to the boundary
at (α, λ) = (0.5, 0) as shown in Fig 2(b); () k = 0.5 with initial state |450, 0, 150〉. The
osillations display ollapse and revival behaviour with smoothly dereasing amplitude.

Here there is no abrupt behaviour, indiative of the fat there is no boundary at λ = 0 in

Fig. 2().
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Figure 5: (Color online) Normalized ground-state expetation value of the moleular

number operator 〈Nc〉 versus the oupling parameter α for the three di�erent ases k = −1,
0 and 0, 5. Here we are using Ω = 1 and N = 900. For the ases k = −1 and k = 0 there

is an abrupt hange in the expetation value 3〈Nc〉/N as the threshold oupling α = 0.866
(for k = −1) and α = 0.5 (for k = 0) is reahed. In ontrast, for k = 0.5, the expetation
value 3〈Nc〉/N inreases smoothly with α, not exhibiting any abrupt behaviour.
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Figure 6: (Color online) Energy gap between the �rst exited state and the ground state

as a funtion of α for (a)k = −1; (b)k = 0; ()k = 0.5 and di�erent values of N . We are

using Ω = 1 and natural units.
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Figure 7: (Color online) Ground-state wavefuntion overlaps as a funtion of the oupling

parameter α for (a)k = −1; (b)k = 0; ()k = 0.5 and Ω = 1. On the top we are using

N = 900 and di�erent values of ∆. In the bottom we are using ∆ = 0.01 and di�erent

values of N . In all ases the �delity exhibits a minimum, whih is substantially more

pronouned for k = −1 and k = 0, ompared to k = 0.5.
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