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We propose a conceptually new framework to study the onset of Anderson localization in dis-
ordered systems. The idea is to expose waves propagating in a random scattering environment to
a sequence of short dephasing pulses. The system responds through coherence peaks forming at
specific echo times, each echo representing a particular process of quantum interference. We suggest
a concrete realization for cold gases, where quantum interferences are observed in the momentum
distribution of matter waves in a laser speckle potential. This defines a challenging, but arguably
realistic framework promising to yield unprecedented insight into the mechanisms of Anderson lo-
calization.

PACS numbers: 71.15.Rn, 42.25.Dd, 03.75.-b, 05.60Gg

Coherent quantum wave scattering is a salient feature
of disordered or chaotic quantum systems. Its manifes-
tations range from coherence peaks in scattering cross
sections over weak localization and quantum fluctuation
phenomena in metals, to strong (Anderson) localization
[1]. Phenomena of this type have been observed with
light [2] or microwaves [3], in electronic conductors [4],
with cold atomic gases [5–8], photonic crystals [9], and
classical waves [10]. Semiclassically, quantum coherence
is understood in terms of the interference of Feynman
path amplitudes. Quantum effects arise when classically
distinct amplitudes interfere to yield non-classical con-
tributions to physical observables, see Fig. 1. For in-
stance, coherent backscattering (CBS) and weak local-
ization [11] are due to the interference of mutually time
reversed paths. Similarly, coherent forward scattering
is caused by the concatenation of two such processes,
or again by the interference of two self retracing loops
traversed in different order [12, 13], etc. Quantum co-
herent contributions are often discriminated from clas-
sical background contributions by their strong sensitiv-
ity to dephasing and decoherence. However, other than
suppressing coherence, generic sources of decoherence –
external magnetic fields, AC electromagnetic radiation,
etc. – do not provide much insight into the mechanisms
of quantum interference in disordered media. Further-
more, decoherence often acts as a source of heating (it
certainly does so on the temperature scales relevant to
cold atomic gases) and leads to an unwelcome nonequi-
librium shakeup of the system.

In this paper, we suggest an alternative protocol for
probing quantum coherence. Its advantage is that it of-
fers much more specific information and at the same time
is less intrusive than persistent external irradiation. The
idea is to expose the quantum system to a source of de-
coherence only at specific ‘signal times’, t1, t2, . . . . The
system then responds to this perturbation at ‘echo times’
τ1, τ2, . . . , which are in well-defined correspondence to

the signal times. Each of these echoes corresponds to a
specific mechanism of quantum-coherent scattering. For
example, an echo at time 2t1 after a decoherence pulse
applied at time t1 is a tell-tale signature of the CBS ef-
fect, cf. Fig. 1c). Likewise, an echo observed at time
2(t2 − t1) in response to two pulses at t1 and t2 > 2t1
identifies a contribution to forward scattering coherence,
etc. The observation of a temporal echo pattern thus re-
alizes a highly resolved probe of quantum coherence in
random scattering media. In the following, we introduce

FIG. 1: a) Copropagating Feynman paths, α = β, yield the
classical contribution to the two-point transition probability
r → r′ (we use the convention where the particle/hole prop-
agates with/against the direction of the arrow). Inset: weak
localization loop. b) Coherent contribution, β = Tα to re-
turn probability r→ r, where Tα is the time reverse of α. c)
Coherent backscattering contribution in the presence of de-
phasing pulses (wiggly lines). While a pulse acting at generic
traversal times t1 6= T/2 (dashed wiggly lines) suppresses
phase coherence, a pulse at t1 = T/2 affects particle and
hole amplitudes in synchronicity and does not reduce their
coherence. Right: synchronicity condition for a bi-temporal
pulse acting at t1, t2 is realized for traversal times T = t1 + t2,
and a coherence signal will be observed at this time.
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the principles of coherent echo response in general terms.
We will then specialize to a system of observables relevant
to cold atom scattering experiments [14, 15], which offer
a degree of control required for the observation of the
CBS echo, and possibly higher-order coherence echoes.
Feynman path approach to coherence echoes:—Consider
the retarded quantum correlation function

X ≡
〈
Ôx(t)Ôx′(0)

〉
, (1)

where the brackets stand for an average over quan-
tum and disorder distributions, Ox = |x〉〈x| is a
projector onto a squeezed state defined by 〈r′|x〉 =

1
(2π)d/4

1
(∆r)d/2

exp
(
− (r′−r)2

(2∆r)2 + i
~p · r

′
)

, the scale ∆r sets

the spatial resolution of the operator, and x = (r,p) is
a phase space vector comprising real space (r) and mo-
mentum space (p) coordinates. In the limit of infinitely

sharp resolution Ôx
∆r→0−→ |r〉〈r| projects onto real-space

coordinates, and the correlation function (1) may serve,
e.g., as a building block for a point-contact transport ob-

servable. In the opposite limit Ôx
∆r→∞−→ |p〉〈p| projects

onto momentum coordinates, and the correlation func-
tion relates to the cross section for the scattering process
p→ p′. Intermediate values of ∆r probe transitions be-
tween coherent-state-like wave packets of minimal quan-
tum uncertainty centered around x.

To introduce the concept of coherence echoes, we con-
sider first the case ∆r = 0 of a space-local two point
correlation function. Within a Feynman path approach
the expectation value (1) then assumes the form

X =
∑
α,β

〈
e

i
~ (S[α]−S[β])Mαβ

〉
, (2)

where α, β are paths connecting r and r′ in time t,
S[α] is the corresponding classical action, and Mαβ is
a container symbol for matrix elements and semiclas-
sical stability amplitudes. The double sum is domi-
nated by path configurations of nearly identical action
|S[α] − S[β]| . ~, all other contributions are effectively
averaged out by large phase fluctuations. The set of con-
tributing paths includes α = β [Fig. 1a)], which yields
the classical, phase-insensitive approximation X0 of the
observable (2). Generic quantum corrections (‘weak lo-
calization corrections’) are due to the branching and sub-
sequent re-unification of path segments to a phase co-
herent entity [Fig. 1a) inset]. Such processes, which at
large time/length scales may accumulate to drive a sys-
tem into an Anderson localized phase, renormalize the
system’s effective diffusivity and are not central to our
present approach. Coherence signals probed by echoes
arise when the two observation points r → r′ approach
each other [Fig. 1b)]. In this case, the double sum is dom-
inated by the classical contribution α = β, and an equally
strong quantum contribution β = Tα, where Tα is the

time reversed of the path β [Fig. 1b)] [16]. Consider now
a single external radiation pulse applied to the system
at time t1 > 0 [Fig. 1c)]. At t1 a particle propagating
along α is at coordinate r(t1), while a particle propagat-
ing along Tα is at r(T −t1), where T is the loop traversal
time. In general, these coordinates differ from each other,
which means that the external pulse affects the quantum
phases carried by the two amplitudes in different ways—
causing decoherence. However, if the traversal time is
such that t1 = T/2, then r(t1) = r(T − t1), and coher-
ence is briefly regained [17]. An observation of the system
at time t = 2t1 ≡ τ1 probes path pairs of just this ‘res-
onant’ length, which can be witnessed by the formation
of a coherence peak in the observable X.

Perturbed quantum diffusion:—To obtain a quantitative
understanding of the echo signal, we consider a weakly
disordered medium in which the paths entering indi-
vidual segments of pair propagation (the double lines
in Fig. 1) describe diffusion. For fixed initial and fi-
nal coordinates r and r′ and propagation time t, the
sum over all co-propagating paths is described by a
classical diffusion propagator ΠD(r, r′; t), or ‘diffuson’
for brevity. The diffuson solves the diffusion equation
(∂t −D∂2

r )ΠD(r, r′; t) = δ(r − r′)δ(t), where D = v2τ/d
is the classical diffusion coefficient, τ the elastic scatter-
ing time, and v = |p|/m the velocity of particles of mass
m. Likewise, the sum over all contributions to a seg-
ment r→ r′ of counter-propagating paths is described by
the propagator ΠC(r, r′; t), the so-called Cooperon mode,
which in the absence of decoherence obeys the same dif-
fusion equation.

Let us now consider diffusive propagation in the pres-
ence of an external source of radiation, represented by
a four-potential A = (φ,a), comprising a scalar and a
vectorial component φ = φ(r, t) and a = a(r, t), resp. To
account for the externally imposed time dependence in a
quantum diffusive process, we need to keep track of the
traversal times of the participating Feynman paths. The
situation is illustrated in Fig. 2. The left panel shows
a diffuson mode comprising two amplitudes starting at
times t±−T , resp. and ending at t±, where T is the time
required to traverse the segment, and the dashed lines are
symbolic for the quantum scattering events causing diffu-
sion. The wiggly lines represent the action of the external
field at time t±− t. If the two paths are traversed simul-
taneously, t+ = t−, the potential affects the upper and
lower line in the same way. In this case, the field does
not destroy the mode, which is another way of saying
that classical diffusion is not affected by quantum deco-
herence. The right panel shows the analogous situation
for the Cooperon mode in a ‘maximally crossed’ repre-
sentation of scattering events. The sign change in the
time reversed potential TA = T(φ,a) = (φ,−a) reflects
the time reversal symmetry breaking nature of external
vector potentials. Likewise, a time-dependent scalar po-
tential φ(t) will cause dephasing, unless an echo condition
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FIG. 2: Coupling of diffuson (left) and Cooperon (right) to an external field A = (φ,a). The field acts at position r at the
passage time of particle (upper line) and hole (lower line), respectively. If these positions differ, dephasing occurs. In the right
panel, TA = T(φ,a) = (φ,−a) indicates time reversal.

is met.
The influence of the field on the diffusion modes can

be quantitatively described by diagrammatic perturba-
tion theory [18]. Under the assumption that the external
field is sufficiently weak not to change the classical trajec-
tories but only alters the quantum phases, the perturbed
diffuson and Cooperon modes (M = D,C) are still gov-
erned by generalized diffusion equations

DMΠM(r, r′; t+, t−, T ) = δ(T )δ(r− r′),

DD/C = ∂t+ ± ∂t− − i[φ(r, t+)− φ(r, t−)]

−D
(
∂r + i[a(r, t+)∓ a(r, t−)]

)2
, (3)

in which the field enters through a covariant derivative.
For given A, these ‘imaginary-time Schrödinger equa-
tions’ can be solved, e.g., by path-integral techniques
[18, 19]. We here consider a situation without magnetic
field, a = 0, and a scalar potential φ(r, t) = −r ·∆pf(t),

f(t) = ~−1
∑N
i=1 δ(t−ti) representing a spatially homoge-

neous force but temporally pulsed field. (The above weak
field assumption requires that the momentum transferred
by each pulse |∆p| � p be much smaller than the
particle momentum.) The time arguments relevant for
the first-order quantum coherence contribution (1) are
t+ = t, t− = 0, T = t, i.e. two counter- propagating paths
running synchronously between time 0 and t. For times
t < t1 before the first pulse the single Cooperon contribu-
tion XC1(t) = c/(Dt)d/2 is just the classical probability
of return within time t, where c is a numerical constant.
The solution of the diffusion equation at times t > t1
exceeding the signal time is

δXC1(t) = XC1(t)e−|t−2t1|/τe . (4)

This result describes a near instantaneous destruction of
the coherence contribution by the pulse at t1 followed by
a revival at the echo time τ1 = 2t1 over a width τe =
~2/D∆p2. To heuristically understand the echo profile,
note that the phases of the two amplitudes are affected

as
〈
ei[φ(r(t1))−φ(r(T−t1))]

〉
' e−

1
2 〈[φ(r(t1))−φ(r(T−t1))]2〉,

where the angular brackets represent averaging over path
configurations. Substituting the potential and noting
that for a diffusive process

〈
[r(t1)− r(t2)]2

〉
∼ D|t1− t2|

one then obtains (4). The width of this echo is deter-
mined by the time scale τe over which the phase mismatch

between the two amplitudes reaches unity,
〈
(∆p∆x)2

〉
∼

∆p2Dτe = ~2.

Higher order quantum interference:—The first-order co-
herence signal is suppressed after the C1 echo occurred at
τ1. However, if a second pulse is applied at time t2 > τ1,
the coherence condition is met once more at τ2 ≡ t1 + t2,
and another C1 echo will be observed [Fig. 1 c) second
diagram]. In addition to this signal, however, the bi-
temporal pulse gives rise to further echoes, and these
probe quantum interference of more complex typogra-
phy. Consider, for example, the D2 coherence process
shown in figure Fig. 3, which describes the interference of
co-propagating paths (no time reversal required!) along
two loops which are traversed in different order. During
its traversal of the upper loop, the particle is hit by the
first pulse at time t1. It then moves on into the second
loop, where it is hit once more at t2. A straightforward
assignment of travel times to path segments shows that
the hole amplitude (first going through the lower loop,
then through the upper) will experience the pulses in
synchronicity, i.e. at the same spatial path coordinates,
provided the time of traversal for each loop equals t2−t1.
In this case, the process is coherent, and an echo will be
observed at τ3 ≡ 2(t2 − t1).

A similar argument shows that at the same time τ3 the
Cooperon process C2a shown in Fig. 3 – two counter -
propagating loops traversed in the same order – be-
comes phase coherent, too. For that path configuration
the coherence condition is satisfied at one more time,
τ4 ≡ 2t2 − t1 and this leads to one more echo C2b, also

FIG. 3: Higher-order coherence contributions to the return
amplitude probed by bi-temporal pulsing. Discussion, see
text.
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FIG. 4: Chronology of quantum coherence echoes in momentum space. Echoes are indicated by red dots whose width/angular
orientation hint at the strength of the signal/orientation of the echo response in momentum space.

indicated in Fig. 3. A common feature of the processes
D2, C2 is that they involve two diffusion modes, two dif-
fusons (D2), or two Cooperons (C2). To quantitatively
described the echoes, we consider the solutions of the
diffusion equations (3), for time arguments specified by
the chronology of the corresponding path patterns. We
obtain the echo contributions

δXM(t) = XM(t)e−|t−τM|/τe , M = D2,C2a,C2b, (5)

where τD2,C2a = τ3, τC2b = τ4, and XM(t) are smoothly
varying functions whose details are not relevant for the
present discussion [20]. We note, however, that XM is
by a factor (Eτ/~)1−d � 1 smaller than the strength
function XC1 of the C1 process and that in this small-
ness reflects the relatively smaller phase volume available
to the returning of higher-order path topologies. A typ-
ical chronology of echo signals is shown in Fig. 4, as a
sequence of dots of varying strength and angular orien-
tiation. The latter refers to directional information en-
coded in momentum space correlation functions, as we
are going to discuss next.
Momentum space echoes:—Although the essential classi-
fication of the system response in terms of echo times
{τi} and the corresponding path structures is univer-
sal, additional information can be obtained if observ-
ables different from the coordinate projectors Ô = |r〉〈r|
are chosen. Specifically, we consider what happens if we
turn to the complementary limit of momentum projec-
tors, Ô = |p〉〈p|. A real space representation of Feyn-
man paths describing classical scattering between generic
states p → p′ is shown in the inset of Fig. 5 a), and
the first coherence contribution, C1, in the main panel.
The coherence of mutually time reversed paths connect-
ing definite momenta does not require equality of the
terminal real space coordinates, which is why C1 no
longer assumes the form of a ‘loop’. It does, however,
require opposite alignment of initial and final momen-
tum, p′ = −p. In a momentum resolved scattering ex-
periment, the C1 echo would therefore be observed as
a contribution to the backscattering probability, as in-
dicated in Fig. 4. The lower panel of the figure ex-
emplifies higher order quantum interference of momen-
tum observables on the D2 process. As discussed above,
D2 is formed by phase coherent superposition of two co-
propagating paths, and this requires alignment of initial

and final momenta, p′ = p, i.e. the D2 process will con-
tribute an echo at τ3 in the forward scattering direction,
which has been identified as particularly interesting [13]
in connection with strong localization phenomena. The
C2a and C2b processes are described by similar skeleton
diagrams, but involve counter-propagating paths.

Experimental realization and summary:—We suggest to
realize coherence echo spectroscopy in cold gases, where
quantum interference of matter waves in random poten-
tial scattering has already been observed [15]. Here, a
cloud of ultracold atoms is released as a Bose-Einstein
condensate from a trap. The atoms are in a param-
agnetic electronic ground state and suspended against
gravity in a spatially homogeneous magnetic field gra-
dient. By switching the magnetic field a well-defined
initial wave packet can be prepared. A far-detuned op-
tical speckle field then produces a conservative random
potential in which the atomic cloud is let to evolve for
some time before real-space [6] or momentum [15] distri-
butions are measured. The key observation for our pro-

FIG. 5: Real space Feynman path representation of scatter-
ing probability between initial and final momentum states p
and p′, resp. a) A singly pulsed Cooperon leads to a ‘coher-
ent backscattering echo’ in direction p′ = −p; Inset: classi-
cal diffusion (immune against decoherence) between generic
states p and p′. b) Two-mode coherent scattering under a
bi-temporal pulse (here exemplified by the two-diffuson con-
tribution) gives rise to echo signals in the forward-scattering
direction p′ = p.
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posal is that the magnetic field gradient can be quickly
switched to impart the proposed decoherence kicks dur-
ing the diffusive propagation inside the disordered poten-
tial. A realization of the single-pulse scenario, therefore,
seems immediately possible with the existing setup. The
observation of the C1 echo would provide smoking gun
evidence for the quantum mechanical coherence nature
underlying the backscattering peak and exclude a clas-
sical origin [21, 22]. Observing higher order quantum
interference signals may be experimentally challenging
but is arguably realistic using similar setups, possibly
constrained to lower-dimensional geometries. Such ex-
periments would provide an unprecedented test of our
understanding of those quantum mechanical coherence
processes which eventually cause full Anderson localiza-
tion of a wave packet in a disordered medium.
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