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1 Introduction

In this paper we present the N = 2 supersymmetrizations of the `-conformal Galilei
algebras in d space dimensions. Here ` is the parameter characterising the structure of
the algebra and takes a non-negative integer or half-integer value. We construct at first
the two finite, centerless, Lie superalgebras which are associated with the N = 2 chiral
and real representations, respectively, and give their D-module representations. We prove
that the centerless, finite N = 2 `-superconformal Galilei algebra of ref. [1], expressed in
terms of superfields, corresponds to the particular choice of the N = 2 real representation.
The novelty here is the introduction of the second superalgebra, associated with theN = 2
chiral representation. In [2] the (mass and exotic) central extensions of the superalgebra
of ref. [1] were given. We prove that mass and exotic central extensions also exist for the
chiral supersymmetrization.

Our construction of the D-module reps for the cases at hand is based on the classified
D-module reps for the relevant subalgebras, such as the N -extended supersymmetry in
0+1 dimensions (see [3] and [4]) and the D-module reps of the finite, simple, N -extended
one-dimensional superconformal algebras (see [5] and [6]).

For N = 2 the chiral and real representations of the 0+1-dimensional supersymmetry
are also denoted as “(2, 2)” and “(1, 2, 1)” reps, as discussed in Section 2. For this
reason the chiral and real N = 2 supersymmetrizations of the `-conformal Galilei algebra
are denoted as G(2,2) and G(1,2,1), respectively. For a non-negative integer or half-integer
value of the parameter ` they admit a consistent truncation as non semi-simple, finite,
centerless, Lie superalgebras. The non-vanishing (anti)commutators of G(2,2) are presented
in formulas (2) and (3). The non-vanishing (anti)commutators of G(1,2,1) are given in (2)
and (4). Their respective D-module representations (realized by differential operators in
d+ 1 space-time dimensions) are given in (5) and (6).

It follows from the Section 2 results that, for ` ≥ 1
2
, the G(2,2) superalgebra contains a

larger number (=2d) of even generators with respect to the G(1,2,1) superalgebra.
Concerning the central extensions the results are common for G(2,2) and G(1,2,1). The

superalgebra G(2,2) in d dimensions has a central extension if ` is a half-integer. This ex-
tension is called the mass extension since the eigenvalue of the central element, in the case
of bosonic conformal Galilei algebra with ` = 1/2, can be interpreted as the mass of the
free Schrödinger equation. G(2,2) in 2 dimensions has another type of central extension if `
is an integer. In analogy with the G(1,2,1) case it will be called the exotic central extension.
Each central extension makes an (anti)commutative subalgebra of G(2,2) noncommutative.
This noncommutative subalgebra is the super-Heisenberg algebra. Representations of
the centrally extended G(2,2) algebras are given in terms of the super-Heisenberg algebra
generators.

The supersymmetrization of the d-dimensional conformal Galilei algebras has a long
history. For ` = 1

2
, the so called Schrödinger algebra, there are many works on super-

symmetrizations. For instance, in [7] Duval and Horváthy presented a systematic way
to supersymmetrize the Schrödinger algebra. Sakaguchi and Yoshida identified various
supersymmetrizations as subalgebra of superconformal algebras [8, 9] (see also [2] for a
more complete list of references). For other values of the parameter `, the investigation
of the supersymmetric cases started recently. Various ` = 1 extensions were considered
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in [10, 11, 12, 13, 14]. Only the N = 2 extensions have been studied for arbitrary values
of ` [1, 2].

Supersymmetrizations of the `-conformal Galilei algebra can be extended for N > 2
(for ` = 1 see [10, 11, 13]). The approach based on the D-module reps which we used
for N = 2 can be applied for larger values of N . Some new features, which will be
discussed in an Appendix, appear. The most relevant is the existence, for N = 4, of a
critical scaling dimension and the fact that, even for ` integer or half-integer, the resulting
N = 4 `-conformal Galilei algebras are infinite-dimensional (the one based on the (4, 4)
rep, however, closes as a non-linear W -algebra on a finite number of generators).

The scheme of the paper is the following. In Section 2 we introduce the finite cen-
terless Lie superalgebras G(2,2) and G(1,2,1) together with their D-module representations.
The central extensions of G(2,2) and the super-Heisenberg representations of the centrally
extended G(2,2) superalgebras are presented in Section 3. In the Conclusions we will
comment about the possible dynamical applications of the present results. Some issues
concerning the supersymmetrization of the `-conformal Galilei algebras for N ≥ 4 are
discussed in the Appendix.

2 The centerless chiral and real N = 2 superconfor-

mal Galilei algebras and their D-module reps.

The conformal Galilei algebras are non semi-simple Lie algebras specified by two param-
eters, d taking a positive integer value (the dimensionality of the non-relativistic space)
and ` being a non-negative integer or half-integer [16]. The parameter d characterizes the
maximal semisimple subalgebra sl(2,R)⊕so(d), while ` specifies the (2`+1)d dimensional
abelian ideal which carries a spin ` representation of the sl(2,R) subalgebra.

The `-conformal Galilei algebras can be naturally realized (and even defined) in terms
of their D-module representations, given by differential operators with respect to the time
(t) and the space coordinates (xi, with i = 1, . . . , d).

Their supersymmetric extensions can be defined by enlarging the set of the D-module
operators by introducing the (operators associated to the) odd generators, together with
the extra generators which are required for the closure of the superalgebra as a graded
Lie algebra.

The supersymmetrization of the `-conformal Galilei algebra must satisfy the con-
straints induced by the supersymmetrization of its bosonic subalgebras. In this respect
two main features are crucial for implementing the whole procedure. The first one requires
the knowledge of the D-module reps, given in [3, 4], of the algebra of the N -Extended
Supersymmetric Mechanics in (0+1)-dimension (the algebra of the Supersymmetric Quan-
tum Mechanics, see [15]). The second feature is based on the construction of the D-module
reps for the supersymmetric extensions of the sl(2,R) algebra (see [5] and [6]), leading to
the D-module reps of the finite, simple, one-dimensional Superconformal Lie algebras.

For N = 2, there are two fundamental D-module reps of the algebra of the Supersym-
metric Quantum Mechanics. They are denoted as (2, 2) and (1, 2, 1), respectively. The
meaning of this notation is the following. The operators of both representations act on 2
bosonic and 2 fermionic time-dependent fields, whose scaling dimensions, however, differ.
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In the first case both bosons have scaling dimension λ and both fermions have scaling
dimension λ+ 1

2
. In the second case the scaling dimension assignment is the following: λ

for the first boson, λ+ 1
2

for the two fermions and λ+ 1 for the remaining boson (known
as the auxiliary field). In the superspace language the (2, 2) rep is known as the chiral
representation, while the (1, 2, 1) rep is known as the real representation, see [3].

The compatibility of these representations with the D-module rep of the sl(2) algebra
(for the correct assignment of the scaling dimension) induces, in both cases, a D-module
rep for the N = 2 extension of the sl(2) algebra, namely the sl(2|1) superalgebra. For
any λ we end up with either the (2, 2) chiral or the (1, 2, 1) real D-module rep of sl(2|1)
(see [5] for details).

In order to get the supersymmetric extension of the conformal Galilei algebra we need
to accommodate the generators P

(n)
i (the basis of the abelian ideal of the bosonic conformal

Galilei algebra) and Mij (spanning the so(d) subalgebra). Their D-module representation,

in the bosonic case, is known (see, e.g. [1, 16]): P
(n)
i = tn∂xi

, Mij = xi∂xj
− xj∂xi

. It is

natural to assume that the generators P
(n)
i and Mij act with the same transformations

on each component field of the given supermultiplet (in the Galilei case each component
field φ carries a dependence on the time and space coordinates, so that φ ≡ φ(t, xi)).

In the bosonic D-module rep the compatibility of the sl(2) generators with the P
(n)
i ,

Mij generators requires that the dilatation operator D and the operator K (the conformal
partner of the Hamiltonian H) are differential operators which, unlike the 0+1 conformal
case, depend not just on t, but also on the space coordinate xi’s. In the 0 + 1-dimensional
case, acting on a field with scaling dimension λ, we have (see [5])

H = ∂t, D = −t∂t − λ, K = −t2∂t − 2λt.

In the (d + 1) dimensional case, in order to have consistent commutators with P
(n)
i and

Mij, in the above formulas the scaling parameter λ has to be replaced with the operator

λ̂:

λ 7→ λ̂ = λ+ `

d∑
i=1

xi∂xi
. (1)

In this way the second parameter ` (the one related to the spin) is introduced.
This construction, for the chiral and the real cases, produces the differential oper-

ators in d + 1 dimensions of the superalgebra sl(2|1) (the generators H,D,K, the R-
symmetry operator R, the supercharges Qa and their superconformal partners Sa, for
a = 0, 1), together with the generators P

(n)
i , Mij. The closure of the superconformal

Galilei as a graded Lie algebra requires the introduction of extra generators arising from
the (anti)commutators of the previous operators. We get, e.g., the fermionic operators

X
(n)
a,i from the commutators [Sa, P

(n)
i ] and the bosonic operators J

(n)
i from the set of anti-

commutators {Sa, X
(n)
b,i }. No further generator is required to close the superalgebra. Since

the graded Jacobi identities are satisfied by construction, the supersymmetric extension,
induced by the D-module, of the conformal Galilei algebra is a graded Lie algebra.

An unexpected feature emerges at this point. Two inequivalent supersymmetric ex-
tensions are obtained, starting either from the chiral or from the real representation of



CBPF-NF-003/13 4

the (one-dimensional) N = 2 supersymmetry. The associated superalgebras will be de-
noted as G(2,2) and G(1,2,1), respectively. The latter coincides with the centerless N = 2
superconformal Galilei algebra, expressed in terms of superfields, introduced by Masterov
in [1]. The novelty here is that the Masterov’s supersymmetrization is not unique, as the
existence of the new supersymmetrization, G(2,2), proves.

Both supersymmetrizations can be consistently truncated, for a non-negative integer
or half-integer `, to non semi-simple, finite-dimensional graded Lie algebras. The inequiv-
alence of the two supersymmetrizations is recovered from their structure constants and
the different total number of generators entering G(2,2) and G(1,2,1), respectively. Besides

the 4 bosonic and 4 fermionic generators entering the sl(2|1) subalgebra and the d(d−1)
2

so(d) generators Mij we have, for both the truncated superalgebras G(2,2) and G(1,2,1),
the P

(n)
i generators for n = 0, 1, . . . , 2` (their number is d× (2`+ 1)) and

the X
(n)
a,i generators for n = 0, 1, . . . , 2`− 1 and a = 0, 1 (their number is 2d× 2`).

For G(2,2) the J
(n)
i generators are obtained for n = 0, 1, . . . , 2` (their number is d×(2`+1)).

For G(1,2,1) they are obtained for n = 0, 1, . . . , 2`−2 (their number is d×(2`−1) for ` ≥ 1
2
).

Therefore the G(2,2) superalgebra contains, for ` ≥ 1
2
, 2d extra generators in the J

(n)
i set

with respect to the G(1,2,1) superalgebra. Both G(2,2) and G(1,2,1) are centerless superalgebras
which can accommodate central extensions, as shown in Section 3.

We present here our results giving the structure constants and the D-module reps of
the G(2,2) and G(1,2,1) superalgebras. Their common sl(2|1) subalgebra reads as follows

[D,H] = H,

[D,K] = −K,
[H,K] = 2D,

[D,Qa] =
1

2
Qa,

[K,Qa] = Sa,

[H,Sa] = Qa,

[D,Sa] = −1

2
Sa,

{Qa, Qb} = 2δabH,

{Sa, Sb} = −2δabK,

{Qa, Sb} = −2δabD + εabR,

[R,Qa] = −εabQb,

[R, Sa] = −εabSb, (2)

(a, b = 0, 1 and ε01 = −ε10 = 1), while the other sl(2|1) (anti)commutators are vanishing.
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For G(2,2) we further have the remaining non-vanishing (anti)commutators

[H,P
(n)
i ] = nP

(n−1)
i ,

[D,P
(n)
i ] = −(n− `)P (n)

i ,

[K,P
(n)
i ] = −(n− 2`)P

(n+1)
i ,

[Qa, P
(n)
i ] = nX

(n−1)
a,i ,

[Sa, P
(n)
i ] = (n− 2`)X

(n)
a,i ,

[R,P
(n)
i ] = 2`J

(n)
i ,

[H,X
(n)
a,i ] = nX

(n−1)
a,i ,

[D,X
(n)
a,i ] = −(n− `+

1

2
)X

(n)
a,i ,

[K,X
(n)
a,i ] = −(n− 2`+ 1)X

(n+1)
a,i ,

{Qa, X
(n)
b,i } = δabP

(n)
i − εabJ (n)

i ,

{Sa, X
(n)
b,i } = δabP

(n+1)
i − εabJ (n+1)

i ,

[R,X
(n)
a,i ] = −(2`+ 1)εabX

(n)
b,i ,

[H, J
(n)
i ] = nJ

(n−1)
i ,

[D, J
(n)
i ] = −(n− `)J (n)

i ,

[K, J
(n)
i ] = −(n− 2`)J

(n+1)
i ,

[Qa, J
(n)
i ] = −εabnX(n−1)

b,i ,

[Sa, J
(n)
i ] = −εab(n− 2`)X

(n)
b,i ,

[R, J
(n)
i ] = −2`P

(n)
i ,

[Mij,Mkl] = δjkMil + δilMjk + δjlMki + δikMlj,

[P
(n)
k ,Mij] = δikP

(n)
j − δjkP (n)

i ,

[X
(n)
a,k ,Mij] = δikX

(n)
a,j − δjkX

(n)
a,i ,

[J
(n)
k ,Mij] = δikJ

(n)
j − δjkJ (n)

i . (3)
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For G(1,2,1) the further non-vanishing (anti)commutators are

[H,P
(n)
i ] = nP

(n−1)
i ,

[D,P
(n)
i ] = −(n− `)P (n)

i ,

[K,P
(n)
i ] = −(n− 2`)P

(n+1)
i ,

[Qa, P
(n)
i ] = nX

(n−1)
a,i ,

[Sa, P
(n)
i ] = (n− 2`)X

(n)
a,i ,

[H, J
(n)
i ] = nJ

(n−1)
i ,

[D, J
(n)
i ] = −(n− `+ 1)J

(n)
i ,

[K, J
(n)
i ] = −(n− 2`+ 2)J

(n+1)
i ,

[Qa, J
(n)
i ] = εabX

(n)
b,i ,

[Sa, J
(n)
i ] = εabX

(n+1)
b,i ,

[H,X
(n)
a,i ] = nX

(n−1)
a,i ,

[D,X
(n)
a,i ] = −(n− `+

1

2
)X

(n)
a,i ,

[K,X
(n)
a,i ] = −(n− 2`+ 1)X

(n+1)
a,i ,

[R,X
(n)
a,i ] = −εabX(n)

b,i ,

{Qa, X
(n)
b,i } = δabP

(n)
i + nεabJ

(n−1)
i ,

{Sa, X
(n)
b,i } = δabP

(n+1)
i + (n− 2`+ 1)εabJ

(n)
i ,

[Mij,Mkl] = δjkMil + δilMjk + δjlMki + δikMlj,

[P
(n)
k ,Mij] = δikP

(n)
j − δjkP (n)

i ,

[X
(n)
a,k ,Mij] = δikX

(n)
a,j − δjkX

(n)
a,i ,

[J
(n)
k ,Mij] = δikJ

(n)
j − δjkJ (n)

i . (4)

One should note the different structure constants (entering, for instance, the {Qa, X
(n)
b,i }

anticommutator) with respect to the previous superalgebra.
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Let eIJ denotes the supermatrix with entry 1 at the crossing of the I-th row and J-th
column and 0 otherwise.

The G(2,2) D-module rep is explicitly given by

H = (e11 + e22 + e33 + e44)∂t,

D = −(e11 + e22 + e33 + e44)(t∂t + λ+ `xi∂xi
)− 1

2
(e33 + e44),

K = −(e11 + e22 + e33 + e44)(t
2∂t + 2λt+ 2`txi∂xi

)− t(e33 + e44),

R = −2(`xi∂xi
+ λ)(e12 − e21 + e34 − e43) + (e34 − e43),

Q0 = e13 + e24 + (e31 + e42)∂t,

Q1 = e14 − e23 − (e32 − e41)∂t,
S0 = (e13 + e24)t+ (e31 + e42)(t∂t + 2λ+ 2`xi∂xi

),

S1 = (e14 − e23)t− (e32 − e41)(t∂t + 2λ+ 2`xi∂xi
),

P
(n)
i = (e11 + e22 + e33 + e44)t

n∂xi
,

J
(n)
i = (e12 − e21 + e34 − e43)tn∂xi

,

X
(n)
0,i = (e31 + e42)t

n∂xi
,

X
(n)
1,i = −(e32 − e41)tn∂xi

,

Mij = (e11 + e22 + e33 + e44)(xi∂xj
− xj∂xi

). (5)

The G(1,2,1) D-module rep is explicitly given by

H = (e11 + e22 + e33 + e44)∂t,

D = −(e11 + e22 + e33 + e44)(t∂t + λ+ `xi∂xi
)− 1

2
(2e22 + e33 + e44),

K = −(e11 + e22 + e33 + e44)(t
2∂t + 2λt+ 2`txi∂xi

)− t(2e22 + e33 + e44),

R = e34 − e43,
Q0 = e13 + e42 + (e24 + e31)∂t,

Q1 = e14 − e32 − (e23 − e41)∂t,
S0 = (e13 + e42)t+ (e24 + e31)(t∂t + 2λ+ 2`xi∂xi

) + e24,

S1 = (e14 − e23)t− (e23 − e41)(t∂t + 2λ+ 2`xi∂xi
)− e23,

P
(n)
i = (e11 + e22 + e33 + e44)t

n∂xi
,

J
(n)
i = e21 · tn∂xi

,

X
(n)
0,i = (e24 + e31)t

n∂xi
,

X
(n)
1,i = (e41 − e23)tn∂xi

,

Mij = (e11 + e22 + e33 + e44)(xi∂xj
− xj∂xi

). (6)
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3 The centrally extended G(2,2) superalgebras and their

representations.

As shown in [2], G(1,2,1) has two types of central extensions according to the pair of
values (d, `). The central extensions make the (anti)commutative subalgebra spanned by

{P (n)
i , X

(n)
a,i , J

(n)
i } noncommutative. In [2] the whole centrally extended G(1,2,1) algebra is

realized in terms of its super-Heisenberg subalgebra generators. In this section we show
that the novel superalgebra G(2,2) shares the same properties. Computing the G(2,2) central
extensions is an easy task. It is straightforward to verify that the following two types of
central extensions are consistent with the graded Jacobi identities:

(i) for any d and half-integer ` (mass central extension)

[P
(m)
i , P

(n)
j ] = δij δm+n,2`ImM, [J

(m)
i , J

(n)
j ] = δij δm+n,2`ImM, (7)

{X(m)
a,i , X

(n)
b,j } = δab δijδm+n,2`−1αmM.

(ii) for d = 2 and integer ` (exotic central extension)

[P
(m)
i , P

(n)
j ] = εij δm+n,2`ImΘ, [J

(m)
i , J

(n)
j ] = εij δm+n,2`ImΘ,

{X(m)
a,i , X

(n)
b,j } = δab εijδm+n,2`−1αmΘ, (ε12 = −ε21 = 1). (8)

The structure constants Im, αm are common for the two extensions; they are given by

Im = c0(−1)mm!(2`−m)!, αm = Im/(2`−m), (9)

where c0 is an arbitrary number depending on ` but independent of m.
We now turn to a representation of G(2,2) with the central extensions. Our aim is

to express the generators of sl(2|1) ⊕ so(d) in terms of P
(n)
i , X

(n)
a,i , J

(n)
i and M (or Θ).

This will be done by replacing the central elements M,Θ with their eigenvalues µ, θ. For
simplicity we use the vector notations

P (m) = (P
(m)
1 , P

(m)
2 , · · · , P (m)

d ), X(m)
a = (X

(m)
a,1 , X

(m)
a,2 , · · · , X

(m)
a,d ),

and introduce two types of product

P (m)J (n) =
d∑

i=1

P
(m)
i J

(n)
i , P (m) × J (n) =

2∑
i,j=1

εijP
(m)
i J

(n)
j .
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In these notations G(2,2) with the mass central extension is represented as follows:

D =
1

2µ

( ∑
A=P,J

2∑̀
m=0

m− `
Im

A(2`−m)A(m) +
∑
a=1,2

2`−1∑
m=0

m+ 1
2
− `

αm

X(2`−1−m)
a X(m)

a

)
,

H = − 1

2µ

( ∑
A=P,J

2∑̀
m=0

m

Im
A(2`−m)A(m−1) +

∑
a=1,2

2`−1∑
m=0

m

αm

X(2`−1−m)
a X(m−1)

a

)
,

K =
1

2µ

( ∑
A=P,J

2∑̀
m=0

m

Im
A(2`+1−m)A(m) +

∑
a=1,2

2`−1∑
m=0

m

αm

X(2`−m)
a X(m)

a

)
,

Mij =
1

2µ

( ∑
A=P,J

2∑̀
m=0

1

Im

(
A

(2`−m)
i A

(m)
j − A(2`−m)

j A
(m)
i

)
+
∑
a=1,2

2`−1∑
m=0

1

αm

(
X

(2`−1−m)
a,i X

(m)
a,j +X

(m)
a,i X

(2`−1−m)
a,j

))
,

R =
1

µ

(
2∑̀

m=0

m

Im

(
P (m)J (2`−m) − P (2`−m)J (m)

)
+

2`−1∑
m=0

m+ 1

αm

(
X

(m)
1 X

(2`−1−m)
2 + X

(2`−1−m)
1 X

(m)
2

))
,

Qa = − 1

µ

2∑̀
m=0

m

Im

(
P (2`−m)X(m−1)

a − εabJ (2`−m)X
(m−1)
b

)
,

Sa = − 1

µ

2∑̀
m=0

m

Im

(
P (2`+1−m)X(m−1)

a − εabJ (2`+1−m)X
(m−1)
b

)
. (10)
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On the other hand G(2,2) with the exotic central extension is represented by

D =
1

2θ

( ∑
A=P,J

2∑̀
m=0

`−m
Im

A(2`−m) ×A(m) +
∑
a=1,2

2`−1∑
m=0

`− 1
2
−m

αm

X(2`−1−m)
a ×X(m)

a

)
,

H =
1

2θ

( ∑
A=P,J

2∑̀
m=0

m

Im
A(2`−m) ×A(m−1) +

∑
a=1,2

2`−1∑
m=0

m

αm

X(2`−1−m)
a ×X(m−1)

a

)
,

K = − 1

2θ

( ∑
A=P,J

2∑̀
m=0

m

Im
A(2`+1−m) ×A(m) +

∑
a=1,2

2`−1∑
m=0

m

αm

X(2`−m)
a ×X(m)

a

)
,

M12 =
1

2θ

( ∑
A=P,J

2∑̀
m=0

1

Im
A(2`−m)A(m) +

∑
a=1,2

2`−1∑
m=0

1

αm

X(2`−1−m)
a X(m)

a

)
,

R =
1

θ

(
2∑̀

m=0

m

Im

(
P (2`−m) × J (m) + P (m) × J (2`−m)

)
+

2`−1∑
m=0

m+ 1

αm

(
X

(m)
1 ×X

(2`−1−m)
2 −X

(2`−1−m)
1 ×X

(m)
2

))
,

Qa =
1

θ

2∑̀
m=0

m

Im

(
P (2`−m) ×X(m−1)

a − εabJ (2`−m) ×X
(m−1)
b

)
,

Sa =
1

θ

2∑̀
m=0

m

Im

(
P (2`+1−m) ×X(m−1)

a − εabJ (2`+1−m) ×X
(m−1)
b

)
. (11)

One may verify by direct computation that the realizations (10) and (11) indeed satisfy
the defining relations of their respective superalgebras.

4 Conclusions.

In this paper we proved the existence of two inequivalentN = 2 supersymmetrizations, the
superalgebras G(2,2) and G(1,2,1), of the d-dimensional `-conformal Galilei algebras. They
are recovered from, respectively, the chiral and the real representations of the N = 2
supersymmetry. Both superalgebras, for non-negative integer or half-integer values of `
are non semi-simple, finite, Lie superalgebras. Two types of central extensions, mass and
exotic, are encountered in both cases.

The present results and construction can be enlarged, in an essentially straightforward
way, to the supersymmetrizations of the `-conformal Galilei algebras for N > 2. The
basic tool is the use of the fundamental D-module representations of the N -extended
supersymmetry. New features, however, appear. The most relevant one (see the N = 4
example discussed in the Appendix) is that, even for positive integer or half-integer `,
the resulting superconformal algebra closes, as a Lie superalgebra, on an infinite number
of generators. It admits, nevertheless, a non-linear W -algebra presentation with a finite
number of generators (the non-linearity in the right hand side is at most quadratic).
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The construction presented in this work is purely algebraic. The connection of `-
conformal Galilei (` > 1) algebras to dynamical systems has been, for a long time, an
open problem. Quite recently, however, in the purely bosonic case, systematic meth-
ods (based on non-linear realization and Maureer-Cartan equations) to derive dynamical
equations from these algebras, have been developed [17, 18, 19] (see also [20, 21, 22]).
So far, the construction of supersymmetric dynamical systems along these lines has not
been addressed in the literature. The results presented in this paper pave the way for a
systematic investigation, left to future works, of this class of supersymmetric dynamical
systems.

Appendix: A comment about the N = 4 supersym-
metrization.

The steps towards an N > 2 supersymmetrization of the `-conformal Galilei algebra
are, essentially, straightforward. At first one considers theD-module reps of the supersym-
metry in 0+1 dimensions (for N = 4, 8, see [3, 4], they are given by the (k,N ,N−k) field
multiplets for k = 0, 1, . . . ,N and with λ, λ + 1

2
, λ + 1 as respective scaling dimensions).

Next the D-module reps of the one-dimensional finite simple superconformal algebras are
taken into account; to consider d spatial dimensions the extra generators P

(n)
i and Mij,

as introduced in Section 2, have to be inserted.
Due to new features, the analogy with theN = 2 case stops here. The first new feature

is the criticality of λ. Unlike N = 2, λ enters the structure constants of N = 4, allowing
to identify the one-dimensional superconformal algebra as D(2, 1;α) for α = (2− k)λ [5].
For N = 8 four one-dimensional simple superconformal algebras (D(4, 1) for k = 0, 8,
F (4) for k = 1, 7, A(3, 1) for k = 2, 6, D(2, 2) for k = 3, 5), are identified at the critical
values λ = 1

k−4 (see [6] for details).

In a d-dimensional space, the scaling dimension λ is replaced by the operator λ̂ given in
(1). For N = 4, λ̂ defines an operatorial-valued D(2, 1;α) subalgebra. Since, however, λ̂
commutes with all generators in D(2, 1;α) it can be treated, for this particular subalgebra,
as a c-number operator.

The other new feature is that the closure of the N = 4 `-conformal Galilei in d
dimension requires, unlike the N = 2 case, the introduction of an infinite number of extra
generators. Therefore the N = 4 superalgebra, even for positive integer or half-integer
values of the parameter `, is an infinitely generated super-Lie algebra. This is implied
by the fact that the R-symmetry of the one-dimensional superconformal subalgebra is no
longer abelian.

It should be pointed out, however, that, at least for k = 4, the N = 4-extension admits
a presentation as a non-linear super W -algebra with a finite number of generators, the
non-linearity in the right hand side of the (anti)commutators being at most quadratic.
The formulas are rather cumbersome and, being outside the main line of this paper, will
not be reproduced here. They will be presented in a future work.
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[10] J. A. de Azcárraga and J. Lukierski, Galilean superconformal symmetries, Phys. Lett.
B 678 (2009) 411; arXiv:0905.0141 [math-ph]

[11] M. Sakaguchi, Super-Galilean conformal algebra in AdS/CFT, J. Math. Phys. 51
(2010) 042301; arXiv:0905.0188 [hep-th].

[12] A. Bagchi and I. Mandal, Supersymmetric extension of Galilean conformal algebras,
Phys. Rev. D 80 (2009) 086011; arXiv:0905.0580 [hep-th].

[13] S. Fedoruk and J. Lukierski, Algebraic structure of Galilean superconformal symme-
tries, Phys. Rev. D 84 (2011) 065002; arXiv:1105.3444 [math-ph].



CBPF-NF-003/13 13

[14] I. Mandal, Supersymmetric Extension of GCA in 2d, JHEP 1011 (2010) 018;
arXiv:1003.0209 [hep-th].

[15] E. Witten, Dynamical Breaking of Supersymmetry, Nucl. Phys. B 188 (1981) 513.

[16] J. Negro, M. A. del Olmo and A. Rodriguez-Marco, Nonrelativistic conformal groups,
J. Math. Phys. 38 (1997) 3786.

[17] A. Galajinsky and I. Masterov, Dynamical realization of `-conformal Galilei algebra
and oscillators, Nucl. Phys. B 866 (2013) 212; arXiv:1208.1403 [hep-th].
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