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1 Introduction

The course of quantum field theory (QFT) was to a large extend determined by three
important conceptual conquests: its 1926 discovery by Pascual Jordan in the aftermath
of what in recent times is often referred to as the Einstein-Jordan conundrum [1] [2] (a
fascinating dispute between Einstein and Jordan), the discovery of renormalized pertur-
bation in the context of quantum electrodynamics (QED) after world war II, and the non-
perturbative insights into the particle-field relation initiated in the Lehmann-Symanzik-
Zimmermann (LSZ) work on scattering theory which subsequently was derived from first
principles [3] and applied to strong interactions in the context of the rigorous derivation of
the particle analog of the Kramers-Kronig dispersion relations including their subsequent
successful experimental test which extended the trust in QFT’s foundational causality
principle. These results encouraged a third project: particle-based on-shell formulations
as the S-matrix bootstrap and Mandelstam’s more analytic formulation in terms of auxil-
iary two-variable representations of elastic scattering amplitudes. The later gauge theory
of the Standard Model resulted from an extension of the quantization ideas which already
had led to QED. Besides many successes, it led to most of the still open problems of
actual research.

Jordan’s changed view about Einstein’s statistical mechanics argument in favor of
the existence of photons in his dispute with Einstein [2] not only led him to accept
Einstein’s reasoning, but also helped him to an extension of quantization to matter waves.
But its main point, the thermal character of subvolume fluctuation resulting from the
restriction of the global vacuum state to the observables localized in that subvolume
did not receive the conceptual attention which, being a characteristic property which
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distinguishes QFT from quantum mechanics (QM), it would have deserved. In fact as a
result of its incomplete understanding it became known as the ”E-J conundrum” [1]. The
perception of the stochastic thermal nature of the reduced vacuum state, i.e. the fact that
the restriction of the pure global vacuum state to observables localized in a subregion
behaves as an impure KMS state was not understood and this lack of understanding
continued for many decades.

The by hindsight obvious explanation is that for a very long time QFT was not recog-
nized as a theory following different principles from QM, but rather as some relativistic
form of QM with infinite degrees of freedom. But in QM the vacuum does not become im-
pure by spatial restriction, and this is independent of whether one uses the few degrees of
freedom Schrödinger description or its infinite degree of freedom Fock space (second quan-
tized) description. Many decades later when, in the special context of wedge-localization,
this aspect of QFT was first noticed in form of an Gedankenexperiment1 [4][5][6], its set-
ting was too special and contrived in order to suspect the existence of an insufficiently
understood additional foundational structure within causal quantum theory (QT). By
the time of Unruh’s observation, the E-J conundrum as a subject of further research was
forgotten; it only played a role in historical reviews as [1] in which the opinion that the
purity of the ground state and its tensor factorization in a spatial bipartite inside/outside
separation is uphold.

¿From a modern point of view the d=1+1 Jordan model of a chiral current (in his
view a ”2-dim. photon field”) is the simplest illustration of ”localization-thermality” (LT)
since it leads to a mathematical isomorphism [2] between LT and the global heat bath
thermal behavior (HT) of statistical mechanics. In the Unruh Gedankenexperiment there
is an analogy between LT and HT, but no isomorphism of the Unruh LT system to HT
(i.e. no ”inverse” Unruh effect in the sense of [7]).

Both Gedankenexperiments demonstrate a kind of thermal manifestation of causal
localization whose early comprehension could have changed the path of QFT history.
When Jordan’s incomplete calculation was published as a separate section in the famous
1926 Dreimännerarbeit with Born and Heisenberg, his coauthors had some reservations,
since it contained problematic aspects which had no place in the previously discovered
QM; but they were not able to clearly articulate their doubts.

Several years later Heisenberg challenged Jordan in a letter about a missing logarith-
mic term proportional to lnε in his calculation of the fluctuation spectrum (where ε is a
length which characterizes the ”fuzzyness” deviation from sharp localization) at the end-
points of Jordan’s localization interval [1]. This led to Heisenberg’s discovery of vacuum
fluctuation near the localization boundaries with ε the ”attenuation length” (”fuzzyness”
of localization-boundary) conceeded to the vacuum polarization cloud. As we know nowa-
days, the localization-caused vacuum polarization (VP) and LT are opposite sides of the
same coin. Jordan’s missed logarithmically divergent localization entropy resulting in
the sharp localization limit (with the ”roughness ε” at the endpoints) for ε → 0 is the
one-dimensional counterpart of the dimensionless area law A/ε2 for localization entropy

1For the present purpose it does not matter whether the reader thinks that the Unruh temperature
can be measured by a thermometer (incorrect!) or whether it is just a parameter which describes the
KMS impurity of a restricted vacuum state (correct) which is a consequence of modular localization [6].
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with ε = ”roughness” (attenuation length conceded to the VP cloud2) [9] [10].
These somewhat hidden properties of QFT place this theory into a sharp concep-

tual contrast to QM; it is neither QM with infinite degrees of freedom nor should it be
referred to as ”relativistic QM” [10]. In his famous paper on VP which he wrote af-
ter challenging Jordan about the missing lnε contribution, Heisenberg showed that the
localization of dimensionless quantum charges (”partial charge”) in QFT behaves quite
different from their counterpart in QM. The inverse relation between sharpness of local-
ization boundaries and increase of VP, measured in terms of the amount of entropy, is the
QFT substitute of the uncertainty relation (which as the absence of the position operator
among localized observables has no place in QFT). Relativistic QM built on the cluster
factorization property, which deals directly with particles without the mediation of fields
(”direct particle interactions”), does exist, but besides a Poincaré-invariant S-matrix (no
crossing property) it has no local covariant observables which characterize causal QFT
[11].

The algebraic formulation of QFT, often referred to as local quantum physics (LQP)
or algebraic QFT (AQFT), has brought the localization properties into the forefront by
demonstrating that they have a natural mathematical counterpart : the Tomita-Takesaki
modular theory of operator algebras [3]. The more recent terminology ”modular localiza-
tion” refers to its deep connection to the causal localization principle, which identifies
QFT as that quantum theory (QT) which results from the mathematical implementa-
tion of this principle. It refers directly to localized subspaces and subalgebras instead
of individual states and operators; the role of quantum fields is simply to ”coordinatize”
localized algebras by playing the role of pointlike singular generators of all localized alge-
bras. Unlike QM, it does not refer to events associated with individual observables, but
rather deals with ensembles of observables (idealized as localized algebras) which share
the same spacetime localization region. As a consequence QFT leads via LT and the
resulting KMS property to a statistical notion, the same real probability as in statistical
mechanics.

This is quite interesting from a conceptual point of view since Born’s probability pos-
tulate in QM has been a point of philosophical controversies. The realization that proba-
bility is an unavoidable consequence of the quantum realization of Einstein’s Minkowski
space formulation of the Faraday/Maxwell causality (action at the neighborhood prin-
ciple) would probability have pleased Einstein, who had a lifelong problem with Born’s
assignment of probability to individual events (or to ”imagined” ensembles) in order to be
able to interpret the Heisenberg/Schrödinger QM. In section 3 and 4 some of its important
definitions and consequences of modular localization will be presented.

The foundational role of modular localization begs the question: how was it possible
to set up renormalized perturbation theory (the textbook QFT of Lagrangians quantiza-
tion) without a thorough understanding of the foundational role of the causal localization
principle and its consequences?

The answer is surprisingly simple: in overcoming the old (Heitler, Wentzel) QM- in-

2The only infinities in QFT occur in quantities which depend on the VP cloud in the limit of sharp
localized boundaries. The ultraviolet divergence problems in connection with calculations of renormalized
correlation functions are the result of using ideas from QM instead of treating quantum fields as operator-
valued Schwartz distributions [12].
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spired formulation, it was sufficient for Tomonaga, Feynman, Schwinger and Dyson to
invoke covariance, which is related to localization, but not equivalent to it. The re-
maining problems took the form of consistent prescription of how to handle infinities in
terms of cutoffs or regulators. Even later, after Epstein and Glaser [12] showed that an
inductive use of causal locality, which combined with a minimality requirement on the
short-distance scaling limit leads to the renormalized result in a completely finite way, the
above mentioned subtleties of causal localization still did not play a role. In retrospect
one may say that modular localization entered particle physics for the first time through
Sewell’s observation [5] that the identification of the Bisognano-Wichmann identification
modular group of wedge-localized algebras with the wedge-preserving Lorentz boost and
the reparametrization of the boost parameter in terms of the proper time of an accelerated
observer explains the Unruh effect as a special LT aspect of modular localization. But it
took another three decades to unravel its constructive power.

Although modular localization had no direct impact on renormalized perturbation,
it would be premature to conclude that its structural consequences are limited to E-J,
the Unruh Gedankenexperiment and Hawking radiation. Recent conceptual progress in
QFT revealed that LT explains the conceptual origin of the particle crossing property in
on-shell quantities as the S-matrix and formfactors [10].

The particle crossing property was still unknown when Heisenberg attempted to for-
mulate particle theory directly in terms of the Sscat matrix [13] without referring to fields,
whose insufficiently understood inherent singular character (Laurent Schwartz distribu-
tions) led to the ”ultraviolet catastrophe”. With the derivation of the LSZ scattering the-
ory and certain analytic properties (needed in the derivation of the particle counterpart
of the Kramers-Kronig optical dispersion relations) also the crossing property received at-
tention. Through its perturbative identification in mass-shell restricted Feynman graphs,
it became gradually clear that particle theory contained a mysterious analytic on-shell
property, in which incoming particles became interchanged with analytically continued
momenta outgoing anti-particles. It was not possible to reduce this property to the (by
that time already known) analytic properties of Wightman’s [27] off-shell correlation func-
tions (the Bargman-Wightman-Hall analytic domain). A rigorous derivation for special
elastic scattering amplitudes from locality properties of off-shell 4-point functions was
based on the use of the unwieldy mathematical theory of several complex variables [14];
as a result the conceptual origin of particle crossing remained a mysterious issue within
the anyhow poorly understood field-particle relation beyond LSZ scattering theory.

These incomplete attempts to unravel the nature of analytic particle crossing were
mostly ignored in mainstream particle physics; they did not fit the post QED Zeitgeist
of S-matrix research in order to understand strong interactions, which mainly consisted
in inventing computational rules and adding analytic assumptions as the computations
progressed. In retrospect it is clear that a foundational understanding of on-shell analytic
properties from the causality principle of QFT was beyond the conceptual knowledge
at that time. As Heisenberg’s first S-matrix attempt, also the bootstrap project came
soon to a halt for the same reasons: the underlying principles were too general and the
additional analytic working assumptions too vague and ad hoc in order to serve for the
start of meaningful computations. Their nonlinear nature (unitarity ”by hand” and not
through the large time asymptotic scattering limit of linear field operators) created the
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wrong expectation that if the bootstrap admits a solution at all, it should be rather
unique (a precursor of later ”theories of everything”). Stanley Mandelstam [15], one of
the most dedicated champions of a ”top-to-bottom approach”3 based on observable on-
shell objects, tried to make the S-matrix project more amenable to calculations by adding
reasonably-looking assumptions concerning two-variable spectral representation for the
elastic scattering amplitude; in fact he introduced most of the on-shell terminology whose
use became standard and will certainly most other ideas of that epoch.

It is the main aim of the present work to show that this project took a wrong turn away
from its original purpose of an S-matrix-based on-shell construction in particle theory,
when in the late 60s a crossing property based on mathematical properties of Euler’s beta
functions was proposed [16]. This led to the dual model and finally to string-theory. The
defining function of the dual model is a crossing symmetric meromorphic function whose
analytic crossing property turns out to have no relation to particle crossing. Actually
the particle crossing in the S-matrix and formfactors can for structural physical reasons
not be described by a meromorphic function in the Mandelstam variables; not even an
approximand which violates unitarity but maintains the other properties of scattering
amplitudes can be meromorphic (absence of cuts) in s,t,u. This raises the question whether
the meromorphic dual model function can be related with any property in quantum
physics or whether it remains the solution of an entirely mathematical game as its origin
suggests.

Following observations by Gerhard Mack [17][18], it will be shown in the next section
that the meromorphic dual model crossing is a rigorous property of the Mellin transform
of conformal 4-point-functions. The location of the poles of this function is given by
the anomalous dimensional spectrum which has no bearing on particle physics. In fact
not only Veneziano’s dual model but also all later versions are of this form. This some-
what unexpected property is a reflection of what in the next section is called the ”picture
puzzle” appearance of the analogy between (d, s) scale dimension spectra in conformal
QFTs and the (m2, s) particle spectra in QFT with mass gaps. Similar to certain gen-
eralized free fields [28], models with discrete infinite particle spectra violate the causal
completeness property and cause the appearance of a Hagedorn temperature in thermal
states whereas infinite discrete spectra of conformal scale dimensions do not show these
unphysical properties. Therefore it is important to be more explicit about the mathe-
matical properties of this ”picture puzzle” scale dimension/mass relation. The precise
statement about the particles from ST and the dual model is of an entirely group theo-
retic nature and establishes the existence of a positive energy Poincaré representation on
the irreducible oscillator algebra of a particular 10 dimensional chiral conformal current
model. This group theoretic fact may be surprising, but it bears no relation to interacting
particles and their S-matrix.

In section 4 we return to the problem of the true origin of particle crossing in the
S-matrix and formfactors and its use in on-shell constructions; it will be shown that
the particle crossing identity is nothing else as the KMS property associated with wedge
localization and rewritten in terms of emulated free-field associated particle states ( a new
concept from modular localization). It is very pleasing that the recognition of the failure of

3An alternative of the standard ”bottom-to-top quantization” with its intermediate ultraviolet prob-
lems in which the physical interpretation (top) starts after the end of the computations.
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the old S-matrix approach is also the start of a new S-matrix-based on-shell construction
(section 4), this time based on modular localization.

As a preparatory step for section 4 one needs to know some basics about modular
operator theory. This is the purpose of section 3 which starts by explaining the limitations
of the standard way of covariantizing Wigner’s positive energy representation and how
modular localization of wave functions helps to overcome them. The modular localization
of subspaces prepares the ground for the modular localization of operator algebras which
in turn leads to the Tomita-Takesaki modular theory in the LQP setting of operator
algebras [3].

Historically the idea of modular localization of wave functions entered Wigner’s rep-
resentation theory as the result of trying to understand the resistance of the zero mass
infinite spin class (faithful representation of Wigner’s ”little group”) against any attempt
to extract a covariant field from those representations. This problem was only solved
more than 6 decades after Wigner’s pathbreaking work with the help of modular local-
ization [19][20] by realizing that this class of representations only admits semiinfinite
string-localized, instead of pointlike generating wave function. This explained immedi-
ately why there was no classical analogue i.e. no Lagrangian from to which this wave
function was related through a Euler-Lagrange variation4. Allowing string-like solutions
also turned out to resolve the well-known clash of massless pointlike vectorpotentials with
the Hilbert space positivity. The better alternative between the two possibilities (either
pointlike in Krein space or stringlike in Hilbert space) is the latter. The same remedy
applies to higher spin massless representation.

In section 3 it is also shown how this observation leads to a radical changes of the
concept of renormalizability with a new view about remaining foundational problems of
the Standard Model.

The concluding remarks tries to explain the origin of the deep schism between particle
physics carried out in the critical tradition (as in sections 2, 3 and 4 in the present work)
and the more metaphoric ST-influenced majority view of what constitutes particle theory.

Our findings support the title and the content of an important contribution by the late
Hans-Jürgen Borchers in the millennium edition of Journal of Mathematical Physics [21]
which reads : ”Revolutionizing Quantum Field Theory with Tomita-Takesaki’s modular
theory”. With all reservations about misuses of the word ”revolution” in particle physics,
this paper is a comprehensive account of the role of modular operator theory in LQP;
its title may also be seen as a premonition of the present progress which is driven by
concepts coming from modular localization. LQP ows Borchers many of the ideas coming
from modular operator theory; for this reason it is very appropriate to dedicate the present
article to his memory.

The new insight which permits to view this new setting among other things also
as a legitimate heir of Mandelstam’s S-matrix ideas before ST, is the observation that
the S-matrix, in addition to its well known role in scattering theories, is also a relative
modular invariant between the wedge-localized interacting algebra and its free counterpart
(generated by the incoming free fields smeared with wedge-supported test functions).
This new role of the S-matrix was already implicitly contained in Res Jost’s work on

4As a rule of thumb (consistent with all that is known): string-localized fields are not Euler-Lagrange
and Euler-Lagrange objects (ST a la Polyakov) are not string-localized.
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the TCP theorem in the setting of a complete particle interpretation; but it only found
its first constructive application after it was realized that the Zamolodchikov-Faddeev
algebra operators of integrable d=1+1 models are the generators of spacetime-localized
wedge algebras in the setting of integrable QFTs [22][23].

Some historical remarks may facilitate to understand the motivation behind this pa-
per; which after all addresses foundational problems of QFT which developed over many
decades. The natural conceptual framework in which the modular localization attained its
important role is the algebraic LQP setting of QFT. It started with Haag’s 1957 attempt5

[25] to base QFT on intrinsic principles instead of subordinating a more fundamental
theory via a quantization parallelism to a less fundamental classical field theory. The idea
that a foundational theory as QFT should not be forced to ”dance to the tune” (Jordan
used the expression ”classical crutches”) coming from a less fundamental classical theory
can already be found in some of Jordan’s early work [26], but the necessary algebraic
concepts were not yet available at his time. Hence the terminology LQP in the present
work stands for a different formulation of QFT while keeping its physical content6. An-
other setting, which also did not refer to quantization, was Wightman’s [27] formulation
of quantum fields in terms of operator-valued Schwartz distributions and their correlation
functions. The two approaches are conceptually closely related by viewing the Wightman
fields as generators of local algebras.

The quantum aspects of causal localization and the associated maximal propagation
speed have been the cause of innumerous misunderstanding. Even one of the most rep-
utable research journals published an article in which Fermi’s famous Gedankenexperi-
ment to demonstrate that the classical limitation through the velocity if light passes to
QED was thrown into doubt [31]. Following critical remarks, PRL published the correct
arguments [32]. The ”effective” localization of propagating (spreading) wave packets in
QM (e.g. the velocity of sound) is not changed in QFT apart from the fact that there
is a maximal effective velocity. But different from QM, the localized observables of QFT
retain the exact (in contrast to effective) classical relativistic propagation properties in the
foundational modular localization of LQP, although they now lead to completely different
nonclassical consequences; fields as singular objects (operator-valued distributions), VP
near localization boundaries (→ localization entropy) and KMS properties of spacially
restricted vacuum states including the natural appearance of probability without Born’s
help. More important is the algebraic aspect of causal localization which is characteris-
tic of QFT. The rather comprehensive correct account in PRL did however not stop the
appearance of ”superluminal” papers whose error can always be traced back to the same
misunderstanding of causal localization.

The presentation of results is strictly limited to their mathematical-conceptual content;
only in the concluding section we allow ourselves some remarks about their position in the
sociological-ideological struggle of the search of the ”heart and soul” of particle theory.
The origin of the present schism in particle theory is presented with the certain sadness
of somebody who is able to compare the present situation with that when he entered
particle theory at the beginning of the 60s. In the present situation in particle theory

5The original written version is in French, later it was translated back into English in [24]..
6The only reasson for using occasionally LQP instead of QFT is to remind the reader that the termi-

nology QFT in this article represents more than a collection of calculational recipes.
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the stagnation of real progress is hidden under an ever increasing mountain of uncritical
speculative papers which instead of solving existing problems only produce new unsolved
ones.

Owing to the subleties of the problems discussed in this paper repetitions with slight
changes of emphasis are meant to be helpful for the reader.

2 Anomalous conformal dimensions, particle spectra

and crossing properties

A large part of the conceptual derailment caused by string theory can be understood
without invoking the subtleties of modular localization. This will be the subject of the
following four subsections.

The principle of modular localization becomes however essential for a foundational
understanding of the particle crossing property which is important for a new formulation
of a constructive on-shell project based on the correct crossing property which replaces
Mandelstam’s attempt and is compatible with the principles of Haag’s local quantum
physics. This will be the subject of section 3 and 4.

2.1 Born localization versus causal localization

Since part of the misunderstandings in connection with ST have to some extend their
origin in confusing ”Born localization” in QM with the causal localization in QFT, it may
be helpful to review their differences [11].

It is well-known since Wigner’s 1939 description of relativistic particles [3] in terms
of irreducible positive energy representations of the Poincaré group that there are no
covariant position operators xµop; in fact the impossibility to describe relativistic particles
in terms of quantizing a classical relativistic particle action or in any other way was
Wigner’s main reason for his representation theoretical construction of their wave function
spaces. The rather simple argument against covariant selfadjoint xµop follows from the non-
existence of covariant spectral projectors E

~xop =

∫
~xdE~x, R ⊂ R3 → E(R) (1)

U(a)E(R)U(a)−1 = E(R + a), E(R)E(R′) = 0 for R×R′

(E(R)ψ,U(a)E(R)ψ) = (ψ,E(R)E(R + a)U(a)ψ) = 0

where the second line expresses translational covariance and orthogonality of projections
for spacelike separated regions. In the third line we assumed that the translation a shifted
E(R) spacelike to itself. But since U(a)ψ is analytic in R4 + iV + (V + forward light cone)
as a result of the spectrum condition, ‖E(R)ψ‖2 = 0 for all R and ψ which implies
E(R) ≡ 0 i.e. covariant position operators do not exist.

The ”Born probability” of QM results from Born’s proposal to interpret the absolute
square |ψ(~x, t)|2 of the spectral decomposition ψ(~x, t) of state vectors with respect to
the spectral resolution of the position operator ~xop(t) at time t. Its use as a localization
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probability density to find an individual particle in a pure state at a prescribed position
became the beginning of one of a still not closed philosophical disputes in QM which
Einstein entered through his famous saying: ”God does not play dice”.

In Haag’s LQP setting this problem does not exist since, as previously mentioned, its
objects of interests are not global position operators in individual quantum mechanical
systems, but rather ensembles of causally localized operators which share the same space-
time localization i.e. belong to the spacetime-indexed algebras A(O) of Haag’s LQP (next
section). The modular localization attributes statistical mechanics-like KMS properties
resulting from a highly impure reduced vacuum state to such an ensemble. As mentioned
this leads to a completely intrinsic notion of probability. As in statistical mechanics, the
KMS property is inherited by all the individual operators of A(O) there is no reason to
use the Born’s quantum mechanical probability interpretation7.

Traditionally the causal localization of QFT enters the theory with the (graded) space-
like commutation (Einstein causality) in Minkowski spacetime of pointlike localized co-
variant fields. There are very good reasons to pass to another slightly more general, but
in a subtle sense also more specific LQP formulation of QFT, namely to Haag’s local
quantum physics (LQP) in which the fields play the auxiliary role of (necessary singular)
generators of local algebras8. In analogy to coordinates in geometry there are infinitely
many such generators which generate the same algebra as there are different coordinates
which describe the same geometry. As in Minkowski spacetime geometry these ”field co-
ordinates” can be chosen globally i.e. the same generating field for the generation of all
local algebras associated to one LQP.

In this more conceptual LQP setting it is easier to express the full content of causal
localization in a precise operational setting. It includes not only the Einstein causality
for spacelike separated local observables, but also a timelike aspect of causal localization,
namely the equality of an O-localized operator algebra A(O) with that of its causal
completion O′′

A(O) = A(O′′), O′ = causal disjoint of O, causal completeness (2)

A(O′) ⊆ A(O)′, = Haag duality, ⊂ Einstein causality

(with A(O)′ commutant of A(O)).The causal completeness requirement does not follow
from Einstein causality and corresponds to the classical causal propagation. A closely
related property is Haag duality. The advantage of the LQP formulation over the use
of fields is clearly seen in case of these three properties for which only Einstein causality
permits a simple formulation in terms of generating fields.

It is not evident but nevertheless true that this timelike causal completion aspect
of causality is intimately related to the cardinality of phase space degrees of freedom.
Whereas both properties are formal attributes of Lagrangian quantization, they have to
be added in ”axiomatic” settings based on mathematically controlled (and hence neither
Lagrangian nor functional) formulations [28]. Their violations for subalgebras A(O) as a

7As mentioned there exists still the hope to derive Born:’s probability in QM as a relic of the intrinsic
LQP probability in a conceptually better understood future relation of QFT with QM.

8To be more precise they are operator-valued Schwartz distributions whose smearing with O-supported
test functions are (generally unbounded) operators affiliated with a weakly closed operator algebra A(O).
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result of too many phase space degrees9 of freedom leads to physically undesirable effects,
which among other things limit the physical application of the mathematical AdS-CFT
correspondence (last subsection).

On the other hand the violation of Haag duality for disconnected or multiply connected
regions have interesting physical consequences in connection with superselection sectors
associated with observable algebras, or with the QFT Aharonov-Bohm effect for doubly
connected spacetime algebras which has its simplest formulation in (m=0,s=1) Wigner
representations with possible generalizations to multiply connected spacetime regions in
higher spin (m=0,s>1) representations [33][34].

The LQP formulation of QFT is naturally related to the Tomita-Takesaki modular
theory of operator algebras; its general validity for spacetime localized algebras of the
latter is a direct result of the Reeh-Schlieder property [3] for localized algebrasA(O),O′′ ⊂
R4 (next section).

It is important to understand that quantum mechanical localization is not cogently
related with spacetime. A linear chain of oscillators simply does not care about the dimen-
sion of space in which it is pictured; in fact it does not even care if it is related to spacetime
at all, or whether it refers to some internal space to which spacetime causality concepts
are not applicable. The modular localization on the other hand is imprinted on causally
local quantum matter, it is a totally holistic property of such matter. As life cannot be
explained in terms of the chemical composition of a living body, localization does not
follow from the mathematical description of the global oscillators (annihilation/creation
operators) in a global algebra. Oscillator variables a(p), a∗(p) ”do not know” whether they
will be used to define Schrödinger fields or free covariant local quantum fields. It is the
holistic modular localization principle which imprints the causal properties of Minkowski
spacetime (including the spacetime dimension) on operator algebras and thus determines
in which way the irreducible system of oscillators will be used in the process of localization
[35]; in QFT there is no abstract quantum matter as there is in QM; rather localization
becomes an inseparable part of it. Contrary to a popular belief (the credo about di-
mensional reduction and extra dimensions), this holistic aspect of QFT (in contrast to
classical theory and Born’s localization in QM) does not permit an embedding of a lower
dimensional theory into a higher dimensional one, neither is its inversion (Kaluza-Klein
reduction) possible

One problem in reading articles or books on ST is that it is sometimes difficult to decide
which localization they have in mind. When e.g. Polchinski in [36] uses the relativistic
particle action

√
ds2as a trailer for the introduction of the Nambu-Goto minimal surface

action
√
dσ2 (with dσ2 being the quadratic surface analog of the line element ds2) in a

description of ST, he probably was unaware that this trailer is contraproductive because
it suggests that a covariant quantum string may not exist for the same reasons as there
are no covariant quantum particle operators. So what was intended as a trailer turns out
to be more like a ”squib load”.

The Polyakov action is the square of the N-G action; it can be formally written in
terms of the potential of an n-component chiral current

9For the notion of phase space degree of freedoms see [96][29][30]
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∫
dσdτ

∑
ξ=σ,τ

∂ξXµ(σ, τ)gµν∂ξXµ(σ, τ) (3)

X = potential of conformal current j

As mentioned before the quantum theory related to the Nambu-Goto action has nothing
to do with its square (for more see later). On the other hand the use of the letter X for the
potential of the multicomponent chiral current unfortunately suggests that Polchinski’s
quantum mechanical ”trailer” has taken roots in the incorrect idea that the action of
a multi-component massless field describes a covariant string embedded into a higher
dimensional Minkowski spacetime similar to an embedding of a linear chain of oscillators
into a higher dimensional QM.

The origin of this confusion is that localization as well as the probability interpretation
are interpretative additions to QM by Born, whereas in LQP they are consequences of
the principle of modular localization. QFT results from the quantum adaptation of the
classical causal propagation principle. This leads to totally unexpected consequences: the
singular nature of quantum fields (operator-valued Schwartz distributions), entropic and
thermal manifestation of localized observables and the ensuing statistical mechanics like
ensemble probability from the impure state which is the result of the restriction of the
vacuum to an operator algebra A(O) of local observables, formation of vacuum polariza-
tion clouds at the causal boundary of the localization region (causal horizon) leading to
an area proportionality of ”localization entropy”. All these phenomena are consequences
of modular localization; in the more concise LQP setting of QFT in terms of nets of local
operator algebras used in this paper this will be referred to as the principle of modular
localization (section 3).

Global matter in QM, as e.g. the irreducible oscillator algebra which underlies chiral
current models, is in certain sense ”abstract” matter without causal localization. The
causal localization of matter in QFT is a holistic property which results from organizing
the abstract global matter according to the modular localization principle. The simplest
illustration is the previously mentioned use of global creation/annihilation operators in
the definition of covariant pointlike free fields which in turn generate local algebras.

It so happens that the abstract oscillator algebra underlying the 10-component super-
symmetric chiral current model can be holistically organized in two different ways; one
leads back to to the Möbius-covariant conformal theory localized on the lightray from
which the abstract irreducible oscillator algebra was extracted in the first place. But in
this special case there also happens to exist a different way which leads to a positive
energy representation of the 10-dimensional Poincaré group (called supersting represen-
tation). As all positive energy representations which do not contain the so-called Wigner
infinite spin representation (section 3), the pointlike nature of its covariant wave functions
(or the associated second quantized fields) is an intrinsic consequence of energy positiv-
ity of the representation [19][20], so there is no way to relate this representation with
spacetime strings. As soon as abstract quantum matter (e.g. the oscillators underlying
the current algebra) are represented in order to fulfill the holistic properties of localiza-
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tion, the abstract matter becomes real quantum matter10 on which the localization is
imprinted.

The conformal quantum matter and the (second quantized) matter related by second
quantization to the Poincare group representation share certain properties but they are
not the same,; in particular there is no ”embedding” of a conformal source matter into
a 10 dimensional target space. The easiest way to see that the representations of this
abstract algebra are different in both cases is to notice that the multi-component charge
spectrum is continuous and the corresponding Poincare momentum spectrum has mass
gaps.

Actually abstract matter is a fiction, it only has been invented to explain the su-
perficial way in which ST deals with the important issue of localization. QFT with its
intrinsic modular localization of quantum matter is more fundamental than global QM
and its notion of intrinsically localized quantum matter has priority. Unfortunately our
conceptual thinking is still dominated by QM and textbook QFT is not of much help on
such issues. This makes correspondences and holographic projections very subtle issues
of QFTs and causes problems in realizing that embeddings and dimensional reductions
are not possible.

The X in the Polyakov action is a treacherous notation since it suggests the existence
of covariant quantum mechanical string which is embedded in an n-dimensinal quantum
world in an analogous way to the embedding of a classical particle. In both cases there
are no covariant quantum counterparts with such properties. What really happens is that
the parametrization of X does (apart from the mentioned localization point associated
with the positive energy representation of the Poincaré group) not refer to spacetime but
rather to an infinite dimensional inner space. This is a space ”above” a localization point
in which one usually pictures the spin component to reside, but which in the case at
hand is infinite dimensional and which ”carries” most of the infinite oscillator degrees
of freedom of what was referred to as ”abstract” quantum mechanical matter outside of
spacetime.

It is precisely on those points on which ST and its incorrect derivatives about extra
dimensions and Kaluza-Klein reductions contradicts local quantum physics. One cannot
discuss problems of causal quantum localization by ”massaging” Lagrangians and using
quasiclassical approximations. The ”heart and mind” of QFT is in the connection between
phase space degrees of freedom and causal localization which is lost in such reasoning;
needless to add that there has never been a argument based on the structure of correlation
functions or localized algebras which supports such a view, despite thousands of publica-
tions on dimensional reductions, branes and similar ideas. It seems that the art to listen
into a theory in oder to understand its principles and find out what it wants and what it
rejects has been lost.

One unexpected remaining feature of the shared origin from the same abstract irre-
ducible oscillator algebra is the fact that the (m2, s) values of the superstring representa-
tion of the 10-dimensional Poincaré group is a subset of the continuous scale dimension
spectrum of a 10-component chiral conformal current algebra. It consists precisely of
those values which appear as the field dimensions of the composites in the global operator

10Actually abstract quantum matter is a fiction. Real quantum matter has its spacetime localization
(including spacetime dimensions) always imprinted.
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expansion of two sigma model fields. This will be mad clear in the next subsection.
This result answers a historical question asked by Majorana [38] (see below): does

there exist an irreducible algebra (for the case at hand the mentioned oscillator alge-
bra) which carries a discrete infinite component representation of the Poincaré group?
The superstring representation is the positive answers to this question. The irreducible
algebra is the oscillator algebra underlying the 10-component current model and the in-
finite component representation is the superstring representation. But the solution of
this group theoretic problem is entirely kinematic in nature, it contains no informations
about particle scattering or other dynamical aspects. In particular there is no relation
to Mandelstam’s S-matrix project in its original pre-Veneziano setting. And there is also
nothing which supports an embedding picture.

The best way of presenting the group theoretical theorem discovered by string theorists
is to view it, as we already indicated, in a historical context as the (presently only known)
solution of the 1932 Majorana project [38]. Majorana was led to this project by the
O(4, 2) group theoretical description of the nonrelativistic hydrogen spectrum. We take
the liberty to formulate it here in a more modern terminology.

Problem 1 (Majorana) Find an irreducible algebraic structure which carries a infinite-
component positive energy one-particle representation of the Poincaré group (an ”infinite
component wave equation”).

Majorana’s own search as well as that for the so-called ”dynamic infinite component
field equation” of the 60s (Fronsdal, Barut,...;see appendix of [39]) consisted in looking for
irreducible group algebras of noncompact extensions of the Lorentz group (”dynamical
groups”), but no acceptable solution was ever found within such a setting. The only
known solution is the above superstring representation which results from an irreducible
oscillator algebra of the n=10 supersymmetric Polyakov model. The positive energy
property of its one-particle content and the absence of components of Wigner’s ”infinite
spin” components (which cannot be pointlike generated) secures the pointlike localizability
of this ”superstring representation”.

For Majorana it may have been a challenge to find an analogy of the O(4,2) hydrogen
group in the context of relativistic wave functions (see below) derived from the structure
of an irreducible algebra. But such a project is not supported by modern particle theory,
in fact not even ST, which according to its own understanding is an S-matrix theory of
interacting particles should not have any use for this group theoretic theorem; to construct
an S-matrix one needs more than just group theory. The rarity of a result does not justify
to use it as a metaphoric start for a new theory and enforce its recognition at conferences
and in journals publications by without coming up with any tangible physical result
(up to this date). This would not have happened if intelligent people with considerable
reputation and charisma did not forget the important role of a critical revision of results
in an increasingly speculative science as particle physics.

Problems which only seem to have one solution are especially hard to assess because
the since Einstein successful method to look for an explanation in terms of an underlying
principle does not apply (a unique ”theory of everything” does not need an understanding
in terms of principles). In such cases one sometimes obtains a better understanding by
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generalizing the problem so the unicity of its solution is lost. For example one may ask
whether representations of more general noncompact groups (”noncompact inner symme-
tries”) can live on index spaces associated to multicomponent currents, or one can extend
the models to all chiral models with continuous superselected charges (in which case one
would enter the largely unknow class of ”nonrational” chiral models). Nothing in this
direction has been done.

There is no problem to find classical theories with noncompact groups represented
on the index spaces of their fields. Whereas for classical covariant fields this is possible,
the example of the covariant classical particle Lagrangian shows that one cannot expect
such a situation to have a covariant quantum counterpart. In fact the concept of inner
symmetries is a pure quantum concept which arises from the superselection structure
of the vacuum representation of observable algebras (which by definition have no inner
symmetries). For QFTs with mass gaps in spacetime dimensions d > 1 + 1 this structure
is discrete and leads to charge-carrying field algebras with compact group symmetries [3].
There are by now good arguments that in models with massless particles this continues to
hold if one replaces the concept of superselection sector by the in this case more relevant
concept of ”charge class” [37]. This situation suggests that one needs chiral conformal
models whose observable algebras have a continuous supply of superselection sector which
limits the chiral theories (by definition) to ”nonrational theories. Besides abelian current
models little is known about this class.

The misunderstandings about localization is a reminder that the subtleties of the
quantum causal localization principle took a long way in order to be understood. This
path starts from the Einstein-Jordan conundrum and took its route through the Unruh
and Hawking effects up to the recent conceptual understanding of the particle crossing
property from modular wedge-localization and there is still no closure in sight.

The confusions about localization often did not enter the calculations of string theorists
but remained in the interpretation. A poignant illustration is the calculation of the
(graded) commutator of string fields in [40][41]. Apart from the technical problem that
infinite component fields can not be tempered distribution (since the piling up of free
fields over one point with ever increasing masses and spins leads to an exponentially
diverging short distance scaling behavior which requires to project the string field onto
finite mass subspaces), the commutator remains pointlike. Certainly this uncommon
distributional behavior has no relation with the idea of spacetime strings; at most one
may speak about a quantum mechanical chain of oscillators in ”inner space” (over a
localization point). The memory of the origin of ST from an irreducible oscillator algebra
is imprinted in the fact that the degree of freedoms used for the representation of the
Poincaré group do not exhaust the oscillator degrees of freedom, there remain degrees
of freedom which interconnect the representations in the ”inner” (m,s) tower. But the
localization properties reside fully in these wave function spaces and, as a result of the
absence of Wigner’s infinite spin representations, the localization is pointlike. This is
precisely what the above-mentioned authors found, but why did they not state this clearly,
why they instead refer to a point on a (imagined) string? Has Heisenberg’s admonition
to limit quantum physics to observables been dismissed in order to serve an ideology?

Does the bizarre suggestion that we are living in an dimensionally reduced target space
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of an almost unique11 10-dimensional chiral conformal theory become more acceptable if
it continues in the less bizarre but nevertheless incorrect form of embeddings of causal lo-
calizable QT i.e. in the believe that there exists a well defined geometric relation between
theories of different spacetime dimensionality (embeddings and dimensional reductions)?
The answer is a clear no; the ideas of Kaluza and Klein originated at a time when the
foundational differences between QM and QFT were not yet noted. Such ideas may be
consistent with quantum theories which do not possess an intrinsic notion of localization
(and its subtle connection with phase space degrees of freedom) as quasiclassical approx-
imation or QM, but they clash with the holistic aspect of modular localization which
imprints the spacetime dimensionality onto causal quantum matter.

The main point of this article is to convince the unbiased reader that indeed a sizable
part of the particle theory community has moved into an increasingly metaphoric direction
instead of solving the hard problems of localization which existed since the time of the
Einstein-Jordan conundrum and only surfaced gradually in the LQP setting of QFT.
Although the errors of ST are known to most physicists familiar with the LQP who tried
to understand ST from a conceptual point of view, it is not possible to overcome the
present schism on this point by a rapid transfusion of LQP acquired knowledge about
modular localization; the split happened already many decades ago and became solidified
within globalized communities. Actually one can assign an exact date to the beginning
of methaforic particle physics, it was the day of the proposal of the dual model and its
subsequent widespread acceptance as an S-matrix property (see next subsection).

It is understandable that this mathematically sophisticated model had a hypnotic ef-
fect on high energy phenomenologists which at the time were looking for descriptions of
infinite particle trajectories. As a result of its rich mathematical content this model also
attracted more mathematical oriented physicists who thought that such deep mathemat-
ical structure deserves a connection with a more foundational kind of physics than the
phenomenological ”reggeology”. The phenomenological excitement was cooled down after
the appearance of new unsupportive observational results; but there was no critical as-
sessment of ST on the theoretical conceptual side. To the contrary, there were comments
as ”ST is a gift of the 21th century which by luck fell into the 20th century” and similar
statements by reputable physicists, and even many decades later there was no serious
attempt to critically compare ST with the sucessful on-shell construction of integrable
d=1+1 QFT; the few attempts to understand the origin and nature of particle crossing
of S-matrices and formfactors from the causal localization principle was initially partially
successful, but then got stuck in the messy details of the theory of several complex vari-
ables [14].

Res Jost was the last physicist who used his deep conceptual understanding of QFT and
its relation to S-matrix properties in order to criticise the bootstrap S-matrix approach[42].
A critique of ST is more subtle and has, according to my best knowledge, never before been
undertaken with the necessary conceptual mathematical precision. Part of the reason may
be that the endurance of ST over so many decades is related to a somewhat confusing
”picture puzzle” between (m,s) spectra of QFTs with mass gaps and (d,s) spectra in
conformal QFT. In fact the solution of the Majorana project in terms of a an infinite

11Up to a finite number of M-theoretic modifications.
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component discrete (m,s) spectrum of a 10-dimensional chiral current theory is the only
known solution of this picture puzzle aspect (see below). Another reason may be that
those individuals who understood the many physical and philosophical weaknesses deemed
it not worthwhile to loose time in controversies with a powerful community which enjoyed
considerable mathematical support. In fact up to this date only mathematicians obtained
valuable informations from ideas from ST which they succeeded to make precise in a
way which suits them. Part of the reason why ST was not analyzed from a foundational
viewpoint (as in this article) may be related to the support from the mathematical side.

Another kind of critique amounts results from the derivation of the true particle cross-
ing from the principle of modular localization. This does not only reveal the difference
to dual model crossing, but also suggests a new on-shell construction methodes based on
the S-matrix which is capable to replace Mandelstam’s approach (section 4).

2.2 The picture puzzle of chiral models and particle spectra

There are two ways to see the correct mathematical-conceptual meaning of the dual model
and (what for historical correctness is called) ST without being side-tracked by treacherous
analogies.

One uses the ”Mack machine” [17][18] for the construction of dual models (including
the dual model which Veneziano constructed ”by hand”). One starts from a conformal 4-
point function of any conformal QFT in any spacetime dimension. To maintain simplicity,
we take the vacuum expectation of four (not necessarily equal) scalar fields

〈A1(x1)A2(x2)A3(x3)A4(x4)〉 (4)

It is one of the specialities of interacting conformal theories that fields have no associated
particles, instead they carry a (generally a non-canonical, anomalous) scale dimensions
which is connected with the nontrivial center of the conformal covering group [10]. It is
well known from the pre BPZ [43] conformal research in the 70s [44] [45] that conformal
theories have converging operator expansions of the type

A3(x3)A4(x4)Ω =
∑
k

∫
d4z∆A3,A4.,Ck

(x1, x2, y)Ck(z)Ω (5)

〈A1(x1)A2(x2)A3(x3)A4(x4)〉 → 3 different expansions (6)

In distinction to the Wilson-Zimmermann short distance expansions which only converge
in an asymptotic sense, these expansions converge in the sense of vector-valued Schwartz
distributions. The form of the global 3-point-like expansion coefficients is completely fixed
in terms of the anomalous scale dimension spectrum of the participating conformal fields;
i.e. unlike in models with a particle interpretation, one does not have to dive deeply into
the dynamics in order to get a rather explicit understanding of the operator expansions
and their coefficient functions.

It is clear that there are exactly three ways of applying global operator expansions to
pairs of operators inside a 4-point-function 6, analogous to the three possible particle pair-
ings in the elastic S-matrix which correspond to the s,t and u in Mandelstam’s formulation
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of crossing. But beware, this dual model crossing arising from the Mellin transform of
conformal correlation has no relation with S-matrix particle crossing in Mandelstam’s on-
shell project! If duality would have arisen in this this conformal context probably nobody
would have connected it with the particle crossing in S-matrices and on-shell formfactors.
But Veneziano found it [16][46] from properties of the Euler beta function which did not
reveal its conformal origin. Since particle crossing and its conceptual origin in the princi-
ples of QFT remained somewhat hidden (for a recent account of its origin from modular
localization see [47][10]) the identification of crossing with Veneziano’s duality met little
resistance. As mentioned it could have been clear with a bit more hidsight that it has no
relation to particle crossing since the S-matrix cannot be meromorphic in Mandelstam’s
variables (and cannot even be approximated in this way); many useful messages to this
extend could already have been learned from the rigorous construction of integrable mod-
els which have no inelastic processes; their scattering functions are meromorphic in the
rapidity uniformization variables but not in Mandelstam’s s,t,u.

The Mellin transform of the 4-point-function is a meromorphic function in s,t,u (with
appologies for the in this case treacherous notation). It has first order poles at the
numerical values of the anomalous dimensions of those conformal composites which appear
in the three different global decompositions of products of conformal fields; they are related
by analytic continuation [17][18]. To enforce an interpretation of particle masses, one
may rescale these dimensionless numbers by the same dimensionfull number. However
this formal step of calling the scale dimensions of composites particle masses does not
change the physical reality. Structural analogies in particle physics are worthless without
an independent support concerning their physical origin.

The Mack machine to produce dual models (crossing symmetric analytic functions of 3
variables) has no definite relation to spacetime dimensions; one may start from a conformal
theory in any spacetime dimension and end with a meromorphic crossing function in
Mellin variables. Calling them Mandelstam variables does not change the conceptual-
mathematical reality which for scattering amplitudes (unitarity, inconsistency of particle
crossing which are meromorphic in Mandelstam variables) is totally different from that of
Mellin transforms of conformal correlation. One is dealing with two objects whose position
in Hilbert space which could hardly be more different than that scattering amplitudes and
conformal correlations; no unitarization scheme can mathematically change one into the
other.

However, and here we come to the picture-puzzle aspect of ST, one can ask the more
modest question whether one can view the dimensional spectrum of composites in global
operator expansions (after multiplication with a common dimensionfull [m2] parameter)
as arising from a positive energy representation of the Poincaré group. The only such
possibility which was found is the previously mentioned 10 component superymmetric
chiral current theory which leads to the well-known superstring representation of the
Poincaré group and constitutes the only known solution of the Majorana project12. In
this way the analogy of the anomalous composite dimensions of the poles in the dual
model from the Mack machine to a m2 mass spectrum is extended to a genuine particle
representation of the Poincaré group in terms of masses which are proportional to a

12To see this, the representation theory of the irreducible oscillator algebra of the chiral current model
is more suitable than the Mack machine.
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conformal sub-spectrum. But even this lucky circumstance which led to the superstring
representation remains on the level of group theory and cannot be viewed as containing
dynamic informations about a scattering amplitude; not even in an approximate sense!

There exists a presentation which exposes this ”picture-puzzle” aspect between con-
formal chiral current models and particle properties in a stronger way: the so-called
sigma-model representation. Schematically it can be described in terms of the following
manipulation on abelian chiral currents (x = lightray coordinate)

∂Φk(x) = jk(x), Φk(x) =

∫ x

−∞
jk(x), 〈jk(x)jl(x

′)〉 ∼ δk,l (x− x′ − iε)−2
(7)

Qk = Φk(∞) , Ψ(x, ~q) = ” : ei~q
~Φ(x)” : , carries ~q − charge

Qk ' Pk, dim(ei~q
~Φ(x)) ∼ ~q · ~q ' pµp

µ, (dsd, s) ∼ (m, s)

The first line defines the potentials of the current ; it is formally infrared-divergent and
should not be used to generate the vacuum sector which is created from the vacuum
by applying the polynomial algebra generated by the current alone. In contrast the
exponential sigma field Ψ is the formal expression for a covariant superselected charge-
carrying field whose symbolic exponential way of writing leads to the correct correlation
functions only in total charge zero correlations where the correlation functions agree with
those computed from Wick-reordering13 of products of : expiqΦ(x) :,all other correlations
of the sigma-model field vanish (indicated by the quotation mark which indicates this
limitation of the formal notation).

The interesting line is the third in (7), since it expresses a ”mock relation” with
particle physics in which the multi-component continuous charge spectrum of the con-
formal currents resemble the continuous momentum spectrum of a representation of the
Poincaré group, whereas the spectrum of anomalous scale dimensions (being quadratic in
the charges) is reminiscent the quadratic relation between momenta and particle masses.
The above analogy amounts to a genuine positive energy representation of the Poincaré
group for the special case of a supersymmetric 10-component chiral current model; it is
the before-mentioned solution of the Majorana project; but its appearance in the Mellin
transform of a conformal correlation has nothing to do with an S-matrix. As also men-
tioned, the shared irreducible abstract oscillator algebra leads to different representations
in the use for the conformal theory and the localization which is related to the positive
energy representation of the Poincaré group14. The difference between the representation
leading to the conformal chiral theory and that of the Poincare group on the target space
(the superstring representation) prevents the (structurally anyhow impossible) interpre-
tation in terms of an embedding of QFTs, although there remains a certain closeness as
a result of the shared oscillator algebra.

The multicomponent Qµ charge spectrum covers the full R10 whereas the Pµ spec-
trum of the superstring representation is concentrated on positive mass hyperboloids; the

13The two-point function of Φ being the indefinite metric logarithm of x-x’.is indefinite but the expo-
nential correlations together with the charge-conservation coply with the Hilbert space structure.

14The 26 component model does not appear here because we are interested in localizable representation;
only positive energy representations are localizable.
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Hilbert space representation of the algebraic oscillator substrate in order to obtain local-
ization and Möbius invariance on the light ray is not the same as that which leads to that
of the superstring representation. Hence presenting the result as an embedding of the chi-
ral ”source theory” into the 10 component ”target theory” is a metaphoric exaggeration
having its psychological origin probably in the picture-puzzle aspect; the representation
theoretical differences express the different holistic character of the two different local-
izations (the target localization being a direct consequence of the intrinsic localization of
positive energy representations of the Poincaré group). What remains is a mathematical
question: why does the positive energy representation of the Poincaré group only occur
when the chiral realization has a vanishing Virasoro algebra parameter? And are there
other non-rational (continuous set of superselection sectors) chiral models which solve
the Majorana project? Both questions can be generalized to: are their other nonrational
chiral theories with (discrete sums of irreducible) representations of inner noncompact
symmetries (target representations) ?

It should be added that it would be totally misleading to reduce the mathemati-
cal/conceptual role of chiral abelian current models to their picture puzzle use in ST or
their role in the solution of the Majorana project. The chiral n-component current mod-
els played an important conceptual role in mathematical physics; the so-called maximal
extensions of these observable algebras can be classified by even integer lattices and the
possible superselection sectors of these so extended algebras are classified in terms of their
duals [48][49][50]. Interestingly the selfdual lattices and their relation with exceptional
final groups correspond precisely to the absence of non-vacuum superselection sectors
which in turn is equivalent to the validity of full Haag duality (Haag duality also for all
multiply-connected algebras [33][34]). They constitute the most explicitly constructed
nontrivial chiral models which shed light on the interplay of discrete group theory and
Haag duality as well as on violation of Haag duality for disconnected localization regions
and anyon statistics as well as many other surprising consequences of modular localiza-
tion. This more than a consolation for their inability to reveal properties about higher
dimensional scattering amplitudes.

2.3 General structural arguments against embeddings and di-
mensional reductions

The important property which permitted to associate the representation of a noncompact
group (in the above case the Poincaré group) with the ”target” of a chiral QFT, is the
existence of superselected charges with a continuous spectrum. This is only possible in
chiral theories, more specifically in nonrational (by definition) models, the only known
case is the one presented in the previous subsection.

This cannot occur in a higher dimensional theory with a complete particle interpreta-
tion since the DHR superselection theory (and its Buchholz-Fredenhagen [51] extension)
leads to a inner compact group [3]. The inner symmetry idea, which dates back to Heisen-
berg’s isospin, is a quantum notion which in the quantization approach to QFT is ”red
back” into the classical Lagrangian field formalism; classical Lagrangians can also support
the action of noncompact symmetry groups. A trivial example is the mentioned classical
covariant path Lagrangian

√
ds2 whose Euler-Lagrange equation is the covariant descrip-
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tion of a classical particle which has no quantum counterpart, and whether the classical
covariant surface solutions of the N-G Lagrangian admit a covariant quantum counterpart
is still questionable. Quantization is not a principle rather it is a conceptional limited but
observational successful artistic device; not every covariant classical theory has a covariant
quantum counterpart, neither can one expect that a QFT, which has been constructed in
an intrinsic way (see the algebraic construction in section 4), can be described in terms
of Lagrangian quantization.

The concept of causal localization is too holistic in order to permit an embedding
or a dimensional reduction outside of quasiclassical approximations of QFT, it would
contradict the principle of modular localization. Nobody has ever been able to show
that the correlation functions of a model in lesser spacetime dimension can be obtained
by restricting a QFT, nor that the inverse association of two QFTs by embedding is
possible. The lack of any intrinsic structural argument (which according to the modular
localization aspect of LQP cannot exist) did not prevent the appearance of thousands of
papers and the creation of special sections in journals and at conferences. This has grown
into a sociological/psychological bulwark which seems to be impenetrable to scientific
arguments. Existing ”proofs” of the Kaluza-Klein mechanism in QFT are always based
on massaging Lagrangians or manipulations in terms of quasiclassical approximations but
such arguments ignore what happens with genuine quantum degrees of freedom in such
manipulations. A closely related issue is that of branes ; in that case Mack [17][18] has
shown that in passing from the full theory to a brane, there is no thinning out of degrees
of freedom. This preservation of cardinality of phase space degrees of freedom leads to
an non acceptable causality violation (violation of the causal completeness property, the
”poltergeist phenomenon”).

This causality violation is the same as that occurring in the mathematical AdS-CFT
correspondence. If one starts from a locally causal AdS model, the associated CFT will be
unphysical as a result of that poltergeist-causing violation of causal completeness; and in
case one starts from a physical CFT, the resulting AdS model whose existence is guaran-
teed by the correspondence will be too ”anemic”. In fact its compact double cone algebras
has no degrees of freedom ( i.e. are trivial) and only in noncompact spacetime regions
extending to infinity (as wedges) degrees of freedom will be present [52]. The Maldacena
conjecture, which presumes that both sides of the correspondence are ”physical”, plainly
contradicts these facts.

Observations about the relation between the independence of the causal completeness
property from the Einstein causality started in the early 60s [28]; the use of generalized free
fields also indicated the relation with too many degrees of freedom. Later this connection
between the cardinality of degrees of freedom and causal localization was sharpened first
to compactness and afterwords to ”nuclearity” [3].

2.4 The correct implementation of quantization for the N-G ac-
tion

The classical geometric surface embedding as defined by the N-G action and treated
according to the rules of reparametrization-invariant quantum systems poses a similar
problem of diffeomorphism invariance as the quantization of the Einstein-Hilbert action
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[53]. This is intimately connected with the physical problem of implementing background
independence in both of these cases. Even though the E-H and the N-G actions are non-
renormalizable (i.e. its perturbative calculations leads to an increasing with perturbative
order set of undetermined parameters), there are arguments that the issue of background
independence can be discussed independent of the renormalizability issue [54] (in which
case the principle of background independence cannot be used to restrict the increasing
number of parameters .

The problems of the N-G quantization and its diffeomorphism covariance has been
recently treated in [53]. The application of this computational setting to the

√
ds2action

results apparently in the quantum theory of a nonrelativistic particle15 and there is no
reason that its N-G counterpart has anything to do with a covariant QT in the sense of a
representation of the Poincaré group. So it seems that only the canonical quantization of
the Polyakov action can be associated with a representation of the Poincaré group which
solves, as explained before, the Majorana project, but has no relation to an on-shell
construction of the kind Mandelstam was looking for.

It is hardly to imagine that string theorists would be satisfied with such a group theo-
retic result, but it is the only mathematical fact which can be salvaged from the Mandel-
stam on-shell construction project after the incorporation of Veneziano’s dual model and
ST. In the next section we will present the derivation of particle crossing from the modu-
lar properties of wedge-localization. This does not only show that there is no relation to
the crossing used in ST, but it also leads to a new formulation of an on-shell construction
project which may be considered as a extension of what Mandelstam had in mind before
the appearance of the dual model.

Before closing this subsection it may be interesting to mention another more concrete
attempt to explore the physical content of the quantum N-G model. This is due to
Pohlmeyer [55] who established the existence of infinitely many classical conservation
laws, which suggest that the model is integrable. For integrable models there exists
a more intrinsic way of quantization which is based on the Poisson bracket structure
between the globally conserved quantities. Such a quantization has a higher degree of
plausibility than canonical quantizations (which anyhow do not refer to the N-G action
but rather to its Polyakov square). In a series of high-quality publications Pohlmeyer
and his collaborators studied the quantization of the Poisson-bracket relations between
the conserved quantities. The drawback from the point of view of intention of the ST
community is that this does not reveal anything about local observables and their possible
covariant behavior under Poincaré transformation.

Since these were rigorous, albeit incomplete mathematical results about the quantum
theory of the N-G action, Pohlmeyer also called his approach to this model string theory.
So the reader should be aware of the multifaceted use of ”string” in Pohlmeyer’s infinite
set of conservation laws abstracted from the N-G action, the [53] quantization of the N-G
action according to the rules for diffeomorphic actions and the canonical quantization
of the Polyakov action (the strings of ST); these two actions lead to different quantum
theories even though there is a correspondence between some of their classical solutions.
In all those cases the use of ”string” refers to different properties of the relativistic classical

15I am indebted to Jochen Zahn for informing me on this point.
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action (traced out world sheets instead of world lines) but in none of these cases this has
anything to do with a string localized in spacetime.

After having explained why the content of ST is entirely group theoretical and can
be best stated by saying that the abstract irreducible oscillator algebra underlying the
10-component Polyakov action has (at least) two inequivalent representations, one which
is organized according to the holistic properties for conformal localization on a lightray
and the other which represents a positive energy discrete representation of the Poincaré
group which realizes the holistic ”target” localization, the reader may be curious to learn
how genuine string-localized objects look really like and what, if any, is their expected
physical role in particle theory. This will be the content of the next section.

3 Higher spin interactions and modular localization

In this section we try to familiarize the reader with the concept of modular localization and
its use in passing from certain nonrenormalizable interactions in terms of pointlike fields to
renormalizable couplings for stringlike fields. In the first subsection we start with a short
review about the connection between positive energy representations of the Poincaré group
and the construction of point-localized covariant fields similar to Weinberg’s method of
covariantizing Wigner’s representations [56]. This subsection also introduces a pedestrian
description of string-localized free fields as well as a schematic description of their ongoing
use in the enlargement of renormalizability to interactions involving arbitrary high spins.

A conceptual/mathematical backup in terms of modular localization is the task of
the second subsection, whereas the third subsection is meant to indicate the enormous
potential of these ideas in the ongoing and future research.

3.1 Wigner representations and their covariantization

Historically the use the new setting of modular localization started with a challenge left
over since the days of Wigner’s particle classification: the causal localization of the third
Wigner class (the massless infinite spin class) of positive energy representations of the
Poincaré group. Whereas the massive class as well as the zero-mass finite helicity class are
pointlike generated, it is not possible to find covariant pointlike generating wave functions
for this third Wigner class. The first representation theoretical argument suggesting the
impossibility of a pointlike generation dates back to [57]. It was followed decades later by
the concept of modular localization of wave functions [19][22] which led to the introduction
of spacelike string-generated fields in [20]. These are covariant fields Ψ(x, e), e spacelike
unit vector, which are localized x + R+e in the sense that the (graded) commutator
vanishes if the complete semiinfinite strings (and not only their starting points x) are
spacelike separated [20]

[Ψ(x, e),Φ(x′, e′)]grad = 0, x+ R+e 〉〈 x′ + R+e
′ (8)

Unlike decomposable stringlike fields (pointlike fields integrated along spacelike halflines)
such elementary stringlike fields lead to serious problems with respect to the activation
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of (compactly localized) particle counters. The decomposable strings of higher spin po-
tentials (see next section) are in an appropriate sense ”milder”. As always, free string-
localized fields are characterized by the property that their Fourier-transforms are on-shell.

In the old days [56] infinite spin representations were rejected on the ground that
nature does not make use of them. But whether in more recent times of dark matter one
would uphold such dismissals is questionable. String-localized quantum fields fluctuate
both in x as well as in e16. They can always be constructed in such a way that their
effective short distance dimension is the lowest possible one allowed by positivity, namely
dsd = 1 for all spins .It is very difficult to construct the covariant ”infinite spin” fields
by the group theoretic intertwiner method used by Weinberg [56]; in [20][58] the more
powerful setting of modular localization was used. In this way also the higher spin string-
localized fields were constructed.

For finite spins the unique Wigner representation always has many covariant point-
like realizations, in fact there are many pointlike spinorial descriptions associated to one
Wigner representation; the associated quantum fields define linear covariant generators
of the system of localized operator algebras whereas their Wick powers are nonlinear.
We now explain the reasons why even in case of pointlike generation on is interested in
stringlike generating fields [20].

For pointlike generating covariant fields Ψ(A,Ḃ)(x) one finds the following possibilities
which link the physical spin s to the (undotted, dotted) spinorial indices

∣∣∣A− Ḃ∣∣∣ 6 s 6 A+ Ḃ, m > 0 (9)

h = A− Ḃ, m = 0 (10)

In the massive case all possibilities for the angular decomposition of two spinorial indices
are allowed, whereas in the massless case the values of the helicities h are severely restricted
(second line). For (m = 0, h = 1) the formula conveys the impossibility of reconciling
pointlike vector potentials with the Hilbert space positivity. This clash holds for all (m =
0, s ≥ 0) : pointlike localized ”field strengths” (in h=2, the linearized Riemann tensor,..)
have no pointlike quantum ”potentials” (in h=2, the gµν ,...) and similar statement holds
for half-integer spins in case of s > 1/2. Allowing stringlike generators the possibilities of
massless spinoral A, Ḃ realizations are identical to those in the first line (9).

Since the classical theory does not care about positivity, (Lagrangian) quantization in-
evitably forces the abandonment of the Hilbert space in favor of Krein spaces (implemented
by the Gupta-Bleuler or BRST formalism). The more intrinsic Wigner representation-
theoretical approach keeps the Hilbert space and lifts the restriction to pointlike in favor
of semiinfinite stringlike generating fields.

It is worthwhile to point out that perturbation theory does not require the validity of
Lagrangian/functional quantization. Actions which lead to Euler Lagrange quantization
limit the covariant realizations of (m,s) Wigner representations to a few spinorial/tensorial
fields with low (A, Ḃ) but as Weinberg already emphasized for setting up perturbation
theory one does not need Euler-Lagrange equations; they are only necessary if one uses

16These long distance (infrared) fluctuations are short distance fluctuation in the sense of the asymp-
totically associated d=1+2 de Sitter spacetime.
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formulation in which the interaction-free part of the Lagrangian enters as in the La-
grangian/functional quantization. The only ”classical” input into causal perturbation as
the E-G approach is a (Wick-ordered) polynomial which implements the classical pointlike
coupling, all subsequent inductive steps use quantum causality. In the modular localiza-
tion based setting of section 3 even this last weak link with classical thinking is cut and
one enters the area of LQP without classical crutches.

For (m = 0, s = 1) the stringlike covariant potentials Aµ(x, e) are uniquely determined
in terms of the field strength Fµν(x) and a spacelike direction e. The idea is somewhat
related to Mandelstam’s early attempt to formulate QED without the vectorpotentials
[15]. But even though the string-local potential is uniquely determined in terms of Fµν
and e , it is much safer to explicitly introduce the covariant Aµ(x, e) (represented as a
semiinfinite integral over the field strength along a semiinfinite line in the direction e) as
an object in its own right because in this way one cannot overlook that one is dealing
with objects which fluctuate in both x and e; in fact the improvement of the short distance
property in x is paid for by a worsening but still well-defined infrared behavior i.e. the
Aµ(x, e) is an operator-valued distribution in both x, e. In contrast to the above infinite spin
representation which cannot be pointlike generated, all other zero mass representations
admit pointlike generators and only exclude pointlike potentials.

As an illustrative example for the use of those objects, let us look at the Aharonov-
Bohm effect in QFT17. In terms of QFT in the LQP formulation this amounts to a
breakdown of Haag duality (2) for a toroidal spacetime localization [33][34]

A(T ′)  A(T )′ (11)

T spatial torus at t = 0 , T ′′ its causal completion

For lower spin zero mass fields or for a torus-localized algebra from a massive field of
any spin, one finds the equality sign (Haag duality). This can be shown in terms of field
strengths, but if one (for the convenience of applying Stokes theorem) uses the indefinite
metric potentials one gets the wrong result, namely equality (zero effect). On the other
hand the use of the string-localized potential in the Hilbert space accounts correctly for the
A-B effect as the breakdown of Haag duality for multiply connected spacetime regions.
It is expected that the breakdown of Haag duality for multiply connected regions is a
general feature of higher spin zero mass representations.

In massive theories there is no such clash between localization and Hilbert space
and there is also no violation of Haag duality in multiply connected regions. Pointlike
potentials exist in Hilbert space (e.g. the Proca vectorpotential), but their short distance
dimensions increase with spin just like those of field strengths (example: d(APµ ) = 2).
Nevertheless one can introduce stringlike potentials as a means to lower the short distance
dimension in order make the couplings fit for renormalization. The connection between
the covariant18 stringlike vectorpotential and its pointlike counterpart (the dsd = 2 Proca
potential APµ (x)) leads to a scalar string-localized field, the counterpart of the Stückelberg
field

Aµ(x, e) = APµ (x) + ∂µφ(x, e) (12)

17The standard A-B effect is about quantum mechanical charged particle in an external magnetic field.
18The spacelike string-direction e participates as a vector in the covariance law.
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Note that here the scalar Stückelberg field is not an independent field (as it would be in
the BRST setting) i.e. the string description of free fields has mixed two-point functions
between Aµ(x, e) and φ(x, e); the physical Hilbert space in which also the string-localized
fields are living is determined in terms of APµ (x) and the e-dependent covariant fields are
relatively string-local (same Borchers class) with respect to the Proca field19.

The strategy of the implementation adiabatic equivalence starts with the zero order
relation (12) which is used in the Bogoliubov formula for the perturbative physical S-
Matrix and the physical fields. For massive QED the interaction density L

L(x, f) =

∫
def(e)L(x, e), L(x, e) =Aµ(x, e)jµ(x), L =

∫
g(x)L(x, f)dx (13)

ψint(x, f) :=
δ

iδh(x)
S(L)−1S(L+ hψ)|h=0, S(L) = Tei

∫
g(x)L(x,f)dx

leads, according to the formal Bogoliubov prescription, to the perturbative S-matrix as
well as to fields indicated for the simplest case in the second line for the interacting Dirac
spinor; time-ordered products of interacting products originate from higher functional
derivatives20. The physical S-matrix results from the Bogoliubov S-functional in the
adiabatic limit g(x) ≡ 1. The existence of this limit is only guarantied in the presence
of mass gaps. The physical interacting fields ψphysint (x, f) also require this adiabatic limit;
but as a result of the appearance of the inverse S-functional, the requirement for their
existence are less stringent. They are localized in a spacelike cone with apex x and require
the same renormalization treatment as a pointlike d=1 field.

The reason why the smearing function in the string direction can be fixed, is that it
plays a different role from g since no limit has to be performed on them. The resulting
physical ψ(x, f)-field depends nonlinearly on f and is localized in a spacelike cone with
apex at x21, but whose distributional extension problem still follows the iterative E-G
scheme in which only the remaining counterterm liberty is still determined by the total
diagonal in the apices [63]. The physical content of the theory can be extracted from the
spacelike cone localized fields for fixed f -smearing since the LQP description of particle
physics also works for spacelike cone localization [3].

The important aspect to notice in connection with string-localized fields with finite
spin is that their Wigner particle representations always admit covariant potentials which
have the lowest possible x-singularity which accounts for their short distance dimension
d=1 and thus permits. In contrast to pointlike realizations they achieve this improved
short distance behavior by ”spreading” the difference between the dpoint which increases
with s to dstring = 1 ”over the string” which accounts for the fact that, although the string
localization is seen in the commutation relations (8) of the potentials, the counterterm
freedom of E-G renormalization is still described by pointlike terms.

In fact the main new idea used in the ongoing research on this problem is that certain
formally pointlike nonrenormalizable couplings (e.g. interactions involving massive vector-
potentials) are ”adiabatically equivalent” to renormalizable stringlike formulations. This
important new insight also amounts to the possibility to compute a point-like perturbation

19If one reads the equation as a definition of AP , one easily shows de(Aµ − ∂µφ) = 0
20In order to include field strengths one needs another source term i.e. S(L+ hψ + kF ).
21The apex is also the point which is relevant for the Epstein-Glaser distributional continuation.
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series via the round-about way of doing renormalization theory in the string-like setting
and afterwords passing via adiabatic equivalence to the pointlike correlation functions. In
this way an old idea [60] to go beyond Schwartz distributions to what is now known as
”hyperfunctions” in order to enter the area of nonrenormalizability takes on new actuality.
Mathematicians found an interesting subset of hyperfunctions which still admit dense sets
of compactly localizable test functions [61] which Arthur Jaffe [62] introduced as ”strictly
localizable fields” (SLF) into QFT, showing among other things that the exponential of a
free field and some of those fields used in couplings between massive vectorpotentials and
scalar fields in [60] belong to this class. At the time when these distributional extension of
singular fields were proposed, there was no motivating application for their introduction;
nonrenormalizable theories did not become less nonrenormalizable as a result to this SLF
extension. As a result of the newly discovered principle of adiabatic equivalence, which in
the case at hand means that massive nonrenormalizable couplings of pointlike d=2 Proca
vectormesons can be converted into d=1 renormalizable stringlike vectormesons with the
high-dimensional contributions being absorbed into surface harmless surface terms, the
concept of nonrenormalizability undergoes a radical change.

A direct formulation in terms of pointlike fields would still result in the appearance
of infinitely many undetermined counterterms, but doing the renormalization in terms of
stringlocal potentials and then passing to the pointlike description shows that this kind
of pointlike nonrenormalizability maintains the same finite number of parameters as the
renormalizable stringlike description; in fact both fields are in the same local equivalence
(Borchers-) class. The principle of modular localization opens the gates for renormaliz-
ability for higher spins!

Taking into account the short-distance scaling degree of free massive string-localized
potentials dstring = 1 instead of dpoint = 2 for pointlike potentials (Proca), the formulation
of the adiabatic equivalence principle starts with establishing the following first and second
order relation (LP Proca Lagrangian ds.d. = 5)

L = LP + ∂µV
µ, V µ(x, e) = jµ(x)φ(x, e), L′ ≡ L(x2, e2) (14)

TL L′ − ∂µT V µL′ − ∂′νTL V ν′ + ∂µ∂
′
vTV

µV ν′ = TLPLP ′

The last relation is a formal second order relation between the string- and point-like
description. It is trivially satisfied for the first term in the Wick expansion of time-
ordered products. It is reasonably easy to check in the tree approximation. To fulfill it
in the loop term is more demanding. The pointlike nature of the tree and loop terms is
established by showing that the directional derivative de and de′ vanish22. For details we
refer to a forthcoming paper by Jens Mund [63]. The fact that scalar ”massive QED”
has quadratic terms in the vectorpotentials changes the situation somewhat, but the
adiabatic equivalence with the nonrenormalizable pointlike formulation also goes through
[64]. Note that the crucial point of the adiabatic equivalence is that the 23difference
between the nonrenormalizable pointlike and the renormalizable stringlike formulation
consists of derivative terms which vanish in the adiabatic limit; the high dimensional

22The E-G extension of the loop term is quite tricky, but the resulting counterterm freedom is still
pointlike [63].

23Part of joint project together with Jens Mund and Jakob Yngvason.
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terms which rendered the pointlike formulation nonrenormalizable are flushed away to
infinity.

New problems however arise in Yang-Mills couplings as a consequence that the equa-
tion which prepares the implementation of the adiabatic equivalence become nonlinear in
higher orders (color indices omitted)

Aµ(x, e) = U(φ(x, e))APµ (x)U(φ(x, e))∗ + ∂µφ(x, e) (15)

Here the color components of φ(x, e) multiplied with the coupling function g play the role
of the numerical parameters in the U -color rotation.

It is conceivable that this already contributes to the second order in addition to those
contributions which come from the trilinear and quadrilinear selfinteractions of the vec-
torpotentials. It would be desirable to show that the U are exponential SLF fields in the
sense of Jaffe, but this is not necessary for the perturbative use of (15) for the imple-
mentation of the adiabatic äquivalence. This calculation, which may decide over whether
there is a theoretical necessity for the coupling to neutral scalar multiplets (Higgs) fields,
has not been done at the time of writing of the present paper.

There exists another approach to massive vectormeson coupling, the BRST formalism.
The formula which relates the Proca potential to a dimension d=1 BRST potential is
similar to the above

ABRSTµ (x) = APµ (x) + ∂µφ
BRST (x) (16)

where φBRST is the indefinite metric Stückelberg field. In this case the lowering of ds.d.
from 2 to 1 is the result of the Krein space setting. But whereas in the string-localized
description the matter-field exists as a spacelike cone-localized object which is still a
distribution in x, the existing literature does not contain a prescription for obtaining
physical matter fields within the BRST formalism but is presently restricted to the S-
matrix [65] of massive vectormesons. Therefore it is interesting to note that the application
of the adiabatic equivalence suggests a way to solve this open problem.

After having addressed technical question concerning the renormalization process for
abelian massive vectormesons, there remains the important question of the existence
of pointlike physical fields. To be more explicit, this amounts in both cases (string-
localization and the BRST formulation in Krein space) to the question of the status of a
pointlike matter-field within a formally nonrenormalizable coupling. The only requirement
on such a field is that it is relative local to the string-localized respectively pointlike BRST
fields. The existence of such singular but yet localizable objects is strongly suggested24

by the following adiabatic equivalence relation for the generating Bogoliubov S-functional

S(L+ hψ + kF ) ' S(L̂+ hψ̂ + kF ) (17)

L̂ = L(Aµ(x, e)→ APµ (x)), ψ̂(x) = e−iφ(x,f)ψ(x, f)

or for BRST : ψ̂(x) = e−iφ(x)ψBRST (x), if L → LBRST

where the ' stands for equality in the adiabatic limit g(x)→ 1. The transformation to the
new S-functional is a formal operator gauge transformation inside the same theory which

24Pointlike matter-fields with a bad high energy behavior already appeared in the ”unitary gauge” of
the oldest results about massive QED [66].
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leaves F unchanged and transforms ψ into the (nonrenormalizable) pointlike candidate
ψ̂ for the the matter field in the adiabatic limit. The adiabatic equivalence of the BRST
functional with that formally obtained from the nonrenormalizable pointlike formulation
in a Hilbert space is the corresponding statement in case of the Krein formulation; in this
case all fields remain formally point-localized. But whereas the string-like formulation
allows a massless limit, the pointlike BRST formulation has no massless physical ψ̂ limit
(there are simply no pointlike fields to which stringlike fields could be adiabatically equiv-
alent), there are simply no pointlike potentials (APµ has no massless limit) as a result of
the clash between pointlike localization and Hilbert space.

Since the string-localized massless vectorpotentials of the Hilbert space formulation
are uniquely fixed in terms of the field strength Fµν(x) and the spacelike string direction
e, the input is the same as in Mandelstam’s attempts to formulate QED solely in terms
of field strengths. It turns out that precisely the directional fluctuation of the x + R+e
localized Aµ(x, e) in e (a point in d=1+2 de Sitter spacetime) attenuate the strength of the
x-fluctuations and renders the interaction renormalizable in the sense of power-counting.
The picture is that the nonvanishing commutators for string crossing are necessary for
lowering the singularity for coalescent x. Mandelstam’s approach probably failed because
in his setting it seems to be difficult to take care of this advantage [59]. In both, the
massless as well as the massive case, there always exists a string-localized description in
which the e-fluctations lower the strength of the x-fluctuation in the pointlike description
in such a way that the resulting short distance scale dimension is d=1 independent of
spin.

This deeper understanding, which is unfortunately blurred behind the widespread
accepted vernacular ”long distances are outside of perturbation theory”25, leads to the
recognition that the correctly formulated massless perturbation approach using the string-
like nature of fields avoids these off-shell infrared divergence problems in the standard
formulation of Yang-Mills couplings. The only remaining genuine infrared problem is the
question of how to relate perturbatively well-defined string-localized correlation functions
to measured charged particles without the infinite infrared clouds of photons entering the
large time asymptotic behavior [37].

In this aspect the stringlike Hilbert space formulation is superior to the Krein space
formulation. It presents for the first time a rigorous perturbative way to check the asymp-
totic freedom statements based on the mass-independent beta function within a formu-
lation with perturbative well-defined Callen-Symanzik equation. In general the pointlike
fields which appear in the adiabatic equivalence relation of massive vectormeson mod-
els constitute a perturbative construct since the pointlike Hilbert space formalism is not
renormalizable. In fact they have a good chance to be SLF (strictly localizable) fields
in the sense of Jaffe [62] which, although not being Schwartz distributions as a result
of their bad short distance properties, are still localizable. The pointlike Hilbert space
field ψ̂ in (17) is connected with its renormalizable BRST or string-localized counterpart
by an operator gauge transformation in terms of an exponential in the Stückelberg field
which makes the physical spinor field nonrenormalizable but maintains its affiliation to a

25The infrared-finiteness of correlations in the string-localized Hilbert space description shows that the
infrared divergences in the standard approach are a result of the of the nonexistence of physical pointlike
fields in the massless limit.
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finite-parametric QFT26.
The advantage of using string-localized fields in Hilbert space instead of pointlike fields

in Krein shows up most forcefully when higher spin zero mass fields participate in the
interaction. In that case pointlike objects which are analogous to Proca fields simply
do not exist, which makes it impossible to describe e.g. massless gauge theories in a
covariant pointlike Hilbert space setting. In other words pointlike physical descriptions
obtained in the Krein space setting have genuine infrared divergences since in that limit.
There is also the problem of the physical credibility of the result that the consistency of
the renormalization of massive Y-M in the Krein setting requires the presence of scalar
multiplets; this is a problem which is independent of the metaphoric picture about the
Higgs mechanism [65]. The more physical string-localized Hilbert space formulation is
sufficiently different in order to consider this problem as open before it is also confirmed
in that setting; theoretical problems cannot be solved by experimental findings.

Another limitation of the BRST formalism is that the descend to the physical Hilbert
space requires an s-operation which only changes the free massive vector potential in a
linear way; a nonlinear connection suggested by gauge theory as in (15) would clash with
the cohomological descent from Krein to Hilbert space. The Krein method did however
confirm the veracity of Stora’s statement that the Lagrangian structure of gauge theory is
not the result of a group theoretic imposition of symmetries, but rather a consequence of
the more subtle renormalization requirement [65] in the presence of massive vectormesons.

Stringlike localization also entered the axiomatic approach to theories with mass-
gaps as the most general localization of charge-carrying fields associated with pointlike
generated observables which can be derived from the mass-gap assumption; this is the
result of a deep structural theorem by Fredenhagen and Buchholz [3]. It seems likely
that the strings of matter fields in massive gauge theories (which unlike the vectormeson
strings cannot be removed by passing to field strength by differentiation) are generators of
Buchholz-Fredenhagen spacelike-cone-localized operators. In this case the massive higher
spin strings could be understood as replacing the too singular nonrenormalizable pointlike
fields which may continue to exist as SLF fields in the Borchersclass of string-localize
fields; which in the algebraic B-F setting indicate their presence in terms of spacelike
cone localization. This may be seen as a concrete explanation as to why noncompact
localization occurs even in theories with mass gaps.

3.2 Remarks on modular localization

There remains the problem of what this significant enlargement of renormalizability and
localization means in terms of its physical consequences. We will return to this problem
in the next subsection, after explaining some ideas about modular localization in the
simplest context of Wigner representations and their relation to the operator-algebraic
formulation of modular localization.

It has been realized, first in a special context in [69], and afterwards in a general
rigorous setting in [19] (see also [67][20]), that there exists a natural localization structure
on the Wigner representation space for any positive energy representation of the proper

26Exponentials of free scalar fields are SLF [62] and it is believed that this is true in general for
exponentials of fields with scale dimension d=1.
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Poincaré group. A convenient presentation can be given in the context of a spinless
particle for which the (m > 0, s = 0) Wigner one-particle space is the Hilbert space H1

of (momentum space) wave functions with the inner product

H1 : (ϕ1, ϕ2) =

∫
ϕ̄1(p)ϕ2(p)

d3p

2p0

, ϕ̂(x) =
1

(2π)
3
2

∫
e−ipxϕ(p)

d3p

2p0

(18)

g ∈ P+ = P↑+ ∪ P
↓
+ U(g)(H

(1)
1 ⊕H

(2)
1 ) =

{
U(g)H

(1)
1 , g ∈ P↑+

Uanti(g)H
(1)
1 , g ∈ P↓+

In this case the covariant x-space amplitude is simply the on-shell Fourier transform of this
wave function, whereas for (m ≥ 0; s ≥ 1/2) the covariant spacetime wave function is more
involved as a consequence of the presence of intertwiners u(p, s) between the manifestly
unitary and the covariant form of the representation [56]. The second line expresses
the action of the proper part of the Poincaré group P+ which includes all det(g) = 1
transformations; it consists of the action of the connected part on the irreducible Wigner
representation space H1 and the action of a time-reversing antiunitary action on a second
copy of H1 (whose wave functions refer to antiparticles which reduce to particles in the
charge-neutral case).

Selecting a wedge region e.g. W0 = {x ∈ Rd, xd−1 > |x0|}, one notices that the
unitary wedge-preserving boost U(ΛW (χ = −2πt)) =: ∆it commutes with the antiunitary
reflection JW on the edge of the e.g. t-z wedge27 (x0 → −x0, z → −z; ~xtransvere fixed).
This has the unusual (and perhaps even unexpected) consequence that the unbounded
and antilinear operator

SW := JW∆
1
2 , S2

W ⊂ 1 (19)

since J∆
1
2J = ∆−

1
2

which is intrinsically defined in terms of Wigner representation data, is involutive on its
dense domain and therefore has a unique closure with ranS = domS (unchanged notation
for the closure).

The involutivity means that the S-operator has ±1 eigenspaces; since it is antilinear,
the +space multiplied with i changes the sign and becomes the -space; hence it suffices
to introduce a notation for just one real eigenspace

K(W ) = {domain of ∆
1
2
W , SWψ = ψ} (20)

JWK(W ) = K(W ′) = K(W )′, duality

K(W ) + iK(W ) = H1, K(W ) ∩ iK(W ) = 0

It is important to be aware that one is dealing here with real (closed) subspaces K of
the complex one-particle Wigner representation space H1. An alternative is to directly
work with the complex dense subspaces K(W ) + iK(W ) as in the third line. Introducing
the graph norm in terms of the positive operator ∆, the dense complex subspace becomes
a Hilbert space H1,∆ in its own right. The upper dash on regions denotes the causal

27Wedges in general position are obtained from the t-z wedge by Poincaré transformations.
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disjoint (the opposite wedge), whereas the dash on real subspaces means the symplectic
complement with respect to the symplectic form Im(·, ·) on H. All the definition work for
arbitrary positive energy representations of the Poincaré group [19].

The two properties in the third line are the defining relations of what is called the
standardness property of a real subspace28; any abstract standard subspace K of an ar-
bitrary real Hilbert with a K-operator space permits to define an abstract S-operator in
its complexified Hilbert space

S(ψ + iϕ) = ψ − iϕ, S = J∆
1
2 (21)

domS = dom∆
1
2 = K + iK

whose polar decomposition (written in the second line) yields two modular objects, a
unitary modular group ∆it and an antiunitary reflection which generally have however no
geometric interpretation in terms of localization. The domain of the Tomita S-operator
is the same as the domain of ∆

1
2 , namely the real sum of the K space and its imaginary

multiple. Note that for the physical case at hand, this domain is intrinsically determined
solely in terms of the Wigner group representation theory, showing the close relation
between localization and covariance.

The K-spaces are the real parts of these complex domS, and in contrast to the com-
plex domain spaces they are closed as real subspaces of the Hilbert space (corresponding
to the one-particle projection of the real subspaces generated by Hermitian Segal field
operators). Their symplectic complement can be written in terms of the action of the
J operator and leads to the K-space of the causal disjoint wedge W ′ (Haag duality)

K ′W := {χ| Im(χ, ϕ) = 0, all ϕ ∈ KW} = JWKW = KW ′ (22)

The extension of W-localization to arbitrary spacetime regions O is done by rep-
resenting the causal closure O′′ as an intersection of wedges and defining KO as the
corresponding intersection of wedge spaces

KO = KO′′ ≡
⋂

W⊃O′′

KW , O′′ = causal completion of O (23)

These K-spaces lead via (21) and (23) to the modular operators associated with KO.
For those who are familiar with Weinberg’s intertwiner formalism [56] relating the

(m,s) Wigner representation to the dotted/undotted spinor formalism, it may be helpful
to recall the resulting ”master formula”

28According to the Reeh-Schlieder theorem a local algebra A(O) in QFT is in standard position with
respect to the vacuum i.e. it acts on the vacuum in a cyclic and separating manner. The spatial
standardness, which follows directly from Wigner representation theory, is just the one-particle projection
of the Reeh-Schlieder property.
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Ψ(A,Ḃ)(x) =
1

(2π)
3
2

∫
(e−ipx

∑
s3=±s

u(A,Ḃ)(p, s3)a(p, s3)+ (24)

+ eipx
∑
s3=±s

v(A,Ḃ)(p, s3)b∗(p, s3))
d3p

2ω∑
s3=±s

u(A,Ḃ)(p, s3)a(p, s3)→ u(p, e) · a(p)

where the a, b amplitudes correspond to the Wigner momentum space wave functions of
particles/antiparticles and the u, v represent the intertwiner and its charge conjugate. For
the third class (infinite spin, last line), the sum over spin components has to be replaced by
an inner product between a p, e-dependent infinite component intertwiner u and an infinite
component a(p) since in this case Wigner’s ”little space” is infinite dimensional. The Ψ(x)
and Ψ(x, e) are ”generating wave functions” i.e. they are wavefunction-valued Schwartz
distributions which by smearing withO-supported test functions becomeO-localized wave
functions. Adding the opposite frequency antiparticle contribution, one obtains the above
formula which, by re-interpreting the a#, b# as creation/annihilation operators (second
quantization functor) and the u(p) by u(p, e), describes point- or string-like free fields. The
resulting operator-valued Schwartz distributions are ”global” generators in the sense that
they generate O-localized operators Ψ(f) for all O by ”smearing” them with O-supported
test functions suppf ∈ O.

Only in the massive case the full spectrum of spinorial indices A, Ḃ is exhausted (9),
whereas the massless case leads to restrictions (10) which come about because pointlike
”field-strength” are allowed, whereas pointlike ”potentials” are rejected (related to the
different zero mass little group). This awareness about the conceptual clash between
localization and the Hilbert space29 is important for the introduction of string-localization.

Whereas Weinberg [56] uses (the computational somewhat easier manageable) covari-
ance requirement30, the modular localization method is based on the direct construction
of localized Wigner subspaces and their stringlike generators. In that case the intertwiners
depend on the spacelike direction e which is not a parameter but, similar to the local-
ization point, a variable in terms of which the field fluctuates [20] and whose presence
allows the short distance fluctuations in x to be more mild than in case of their pointlike
counterparts.

The the short-distance improving property of the generating stringlike fields is indis-
pensable in the implementation of renormalizable perturbation theory in Hilbert space
for interactions involving spins s > 1/231. Whereas pointlike fields are the mediators be-
tween classical and quantum localization, the stringlike fields are outside the Lagrangian
or functional quantization setting since they are not solutions of Euler-Lagrange equa-
tions; as already Weinberg noticed one does not need a free Lagrangion in order to writen

29In the case of [20] this awareness came from the prior use of ”modular localization” starting in [68][69]
but foremost (covering all positive energy Wigner representations) in [19].

30For wave functions and free fields covariance is synonymous with causal localization, but in the
presence of interaction the localization of operators and that of states split apart.

31These are also prcisely those interactions in which the absence of mass gaps does not lead to problems
with the particle structure.
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down Feynman rules for arbitrary spin. This fact is important in causal perturbation the-
ory where any scalar Wick polynomial of spinorial fields can be used whereas Lagrangian
and functional quantization needs the full action. String-localization lowers the power-
counting limit, but renders the application of the iterative Epstein-Glaser machinery [12]
more involved. In the next section it will be shown that modular localization is essen-
tial for generalizing Wigner’s intrinsic representation theoretical approach to the realm of
interacting observable algebras.

In order to arrive at Haag’s algebraic setting of local quantum physics in the absence
of interactions, one may avoid ”field coordinatizations” and apply the Weyl functor Γ
(or its fermionic counterpart) directly to wave function subspaces where upon they are
functorially passed directly to operator algebras, symbolically indicated by the functorial
relation

KO
Γ→ A(O) (25)

The functorial map Γ also relates the modular operators S, J,∆ from the Wigner setting
with their ”second quantized” counterparts SFock, JFock,∆Fock in Wigner-Fock space; it
is then straightforward to check that they are precisely the modular operators of the
Tomita-Takesaki modular theory applied to causally localized operator algebras (using
from now on the shorter S, J,∆ notation also for modular objects in operator algebras).

σt(A(O)) ≡ ∆itA(O)∆−it = A(O) (26)

JA(O)J = A(O)′ = A(O′)

In the absence of interactions these operator relation are consequences of the modular re-
lations for Wigner representations. The Tomita-Takesaki theory secures their general ex-
istence for standard pairs (A,Ω) i.e. an operator algebras A and a state vector Ω ∈ H on
which A acts cyclic and separating (no annihilators of Ω in A). The polar decomposition
of the antilinear closed Tomita S-operator leads to the unitary modular automorphism
group ∆it associated with the subalgebra A(O) ⊂ B(H) and the vacuum state vector Ω
i.e. with the pair (A(O),Ω).

Although B(H) is generated from the two commuting algebras A(O) and A(O)′,
they do not form a tensor product in B(H); hence the standard quantum-information
and QM concepts concerning entanglement and density matrices are somewhat different;
the QFT realization of entanglement for monads is stronger, it leads to a more singular
form of entanglement in which impure states cannot be described in terms of density
matrices 32. As a result of this ”monad-type entanglement” the impure state results from
just restricting the global vacuum to the local monad, one does not have to average over
degrees of freedom in order to convert entangled states into density matrices (as it would
be necessary in the standard quantum information situation where instead of a monad
one has a B(H) type algebra associated with a factor space H).

As mentioned, modular localization of operators is more restrictive than modular
localization of states. It is perfectly conceivable that a state vector generated by applying
an algebraically indecomposable stringlike localized field to the vacuum is decomposable

32The localization entropy of the vacuum entanglement for A(O)/A(O′) is infinite.
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into a direct sum/integral over pointlike generated Wigner representations; in fact all
positive energy representations which do not contain components to the infinite spin
representations allow such generally continuous decomposition. An important illustration
of this fact are the charge-carrying infraparticle fields in QED.

The only case for which the modular localization theory (the adaptation of the Tomita-
Takesaki modular theory to the causal localization principle of QFT) has a geometric
interpretation independent of whether interactions are present or not and independent
of the type of quantum matter, is the wedge region i.e. the Poincaré transforms of the
standard wedge W = {x0 < x3|xtr ∈ R2} . In that case the modular group is the wedge-
preserving Lorentz boost, and the J represents a reflection on the edge of the wedge
i.e. it is up to a π-rotation equal to the antiunitary TCP operator. The derivation of
the TCP invariance as derived by Jost [42], together with scattering theory (the TCP
transformation of the S-matrix) leads to the relation

J = SscatJin (27)

which in [68][69] has been applied to constructive problems of integrable QFTs. This
is a relation which goes much beyond scattering theory; in fact it only holds in local
quantum physics where it attributes the new role of a relative modular invariant of causal
localization to the S-matrix which Sscat does not have in QM.

This opens an unexpected possibility of a new access to QFT, in which the first
step is the construction of generators for the wedge-localized algebra A(W ) with the
aim to obtain spacelike cone-localized (with strings as a core) or double cone-localized
algebras (with a point as core) from intersecting wedge algebras. In this top-to-bottom
approach, which is based on the intuitive idea that the larger the localization region the
better the chance to construct generators with milder vacuum polarization, pointlike fields
would only appear at the end of the construction. In fact according to the underlying
philosophy that all relevant physical data can be obtained from localized algebras, the
use of individual operators (apart from the distinguished conserved currents of inner
symmetries) within such an algebra may be avoided althogether; the relative positioning
of the localized algebras (monads) should account for all physical phenomena in particle
physics, monads by themselves have no individuality, they are all isomorphic The next
section presents the first step in such a construction.

The only prerequisites for the general (abstract) case is the ”standardness” of the
pair (A,Ω) where ”standard” in the theory of operator algebras means that Ω is a cyclic
and separating vector with respect to A, a property which in QFT is always fulfilled for
localized A(O)′s, thanks to the validity of the Reeh-Schlieder theorem [3]. These local
operator algebras of QFT are what has been referred as monads in previous publications
[10]; as mentioned before, they are remarkably different from the algebra of all bounded
operators B(H) which one encounters for Born-localized algebras in QM [11]. For general
localization regions the one-parametric modular unitaries have no geometric interpretation
(they describe a kind of fuzzy action inside O), but they are uniquely determined in terms
of intersections of their geometric W -counterparts and are expected to become important
in any top-to-bottom construction of models of QFT. Even in the simpler context of
localized subspaces KO related to Wigner’s positive energy representation theory for the
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Poincaré group and its functorial relation to free fields, these concepts have shown to be
useful [19].

The most important conceptual contribution of modular localization theory in the
context of the present work is the assertion that the reduction of the global vacuum (also
finite energy particle states) to a local operator algebra A(O) leads to temperature-like
states for which the ”thermal Hamiltonian” Hmod is the generator of the modular unitary
group

e−iτHmod := ∆iτ (28)

〈AB〉 =
〈
Be−HmodA

〉
where the second line has the form is what one obtains for heat bath thermal systems
after rewriting the Gibbs trace formula into the state-setting of the open system formu-
lation of statistical mechanics33 [3]. Whereas the trace formulation breaks down in the
thermodynamic limit, this analytic KMS formula (asserting analyticity in −1 < Imτ < 0)
remains. It is in this and only in this thermodynamic limit, that a monad algebra appears
also in QM.

As mentioned in the introduction, the intrinsic thermal aspect of localization is the
reason why the probability issue in QFT is conceptually radically different from QM for
which one has to add the Born probability; localization and probability are added to QM
since as a global theory these aspects are not intrinsic.

Closely related to a modular localization is the ”GPS characterization” of a QFT
(including its Poincaré spacetime symmetry, as well as the internal symmetries of its
quantum matter content) in terms of modular positioning of a finite number of monads
in a shared Hilbert space. For d=1+1 chiral models the minimal number of copies is
2, whereas in d=1+3 the smallest number for a GPS construction is 7 [70]. This way
of looking at QFT is an extreme relational point of view in terms of objects which have
no internal structure by themselves; this explains the terminology ”monad” (Leibnitz’s
point of view about reality but now in the context of quantum matter) [70][11]. This view
of QFT exposes its radically holistic structure in the most forceful way. In praxis one
starts with one monad and assumes that one knows the action of the Poincaré group on
it [68][69]. This generates a net of transformed monads which by forming intersections
lead to monads associated to smaller regions (spacelike cones or double cones). This
was precisely the way in which the existence of factorizing models was shown [23], where
the nontriviality of the intersection was established by verifying the ”modular nuclearity
property” of degrees of freedom.

In order to show the power of this new viewpoint for particle physics, the following
last subsection shows some different viewpoints about some open problems in Standard
Model physics.

3.3 Expected consequences for Standard Model physics

Since its inception the ”Higgs mechanism” has been the cause of many conceptual mis-
understandings [71]. There were two interpretations namely as a spontaneous symmetry

33Ground state problems in QM do not come anywhere near such a tight situation.
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breaking in which the zero mass Goldstone degree of freedom was used to convert a pho-
ton with two helicity degrees of freedom into a massive vectormeson with 3 polarization
degrees of freedom, or as a kind of screened electromagnetism. The screening idea can
be traced back to Schwinger [72] who thought that QED may exist in another phase in
which the Maxwell charge is screened (i.e. the integral over the zero component of the
Maxwell current vanishes) and the massless vectorpotential becomes massive. In this case
the Maxwell charge vanishes, whereas the spontaneous symmetry breaking mechanism
leads to an infinite charge as the result of the coupling of a the current to a zero mass
Goldstone boson

screening : Q =

∫
j0(x)d3x = 0, ∂µjµ = 0 (29)

spont.symm.− breaking :

∫
j0(x)d3x =∞

Obviously the analogy to the quantum mechanical Debeye screening led him this idea.
In that case long range potentials between electrically charged particles in a medium in
which both ± charges are present become effectively short ranged. But whereas in QM
this is an effective mechanism which does not alter the fundamental quantum mechanical
structure, screening in QFT is more radical. The conceptually different structure of causal
QED requires a change of particle spectrum from photons to massive vectormesons and a
change of the charge matter from complex to real; hence such analogies have to be taken
with a grain of salt. But it has a certain intuitive appeal to picture the original model of
a real scalar field interacting with a massive vectorpotential as proposed by Higgs as the
screened form of scalar QED in which the imaginary component of the scalar charged field
converts the two helicity component photon into the three spin component vectormeson
(the Proca field).

Remembering that scalar QED is a renormalizable theory with two couplings, the
presentation of the Higgs model as screened scalar QED seems to be conceptually better
justified than assigning to a Goldstone boson the role of ”fattening” the photon, although
a pragmatist may maintain that metaphoric arguments are acceptable as long as the
result is intrinsically consistent. But even the staunchest pragmatist probably would
have changed his mind, after becoming aware of the following theorem

Theorem 2 (Swieca [73]) In abelian gauge theories with a mass gap the Maxwell charge
is screened

mass gap and ∂νFµν = jµ y Q = ”

∫
d3xj0(x)” = 0 (30)

This theorem was later generalized in [51]. It does not distinguish between elementary
mass and a mass from the Higgs mechanism. But this is because also experiments cannot
distinguish between these possibilities. The Higgs mechanis was the historical path by
which physicists familiar with Goldstones theorem discovered couplings between massive
vectorpotentials and scalar neutral (”screened”) came to light, but now that we know
that the possibility of such renormalizable couplings has been simply overlooked before
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Higgs we can dispense such ”pons asini” which have no counterpart in nature. The only
theorems which prevent conserved charges to lead to nontrivial charges are the Goldstone
theorem for spontaneous broken symmetries and Swiecas screening theorem which at-
tributes mathematical meaning to Schwinger’s screening ideas. The question of whether
a model which couples massive vectormesons also needs a coupling to scalar particles for
reasons of consistency is an issue which has to be settled by studing its renormalization
theory; for massive spinor and scalar QED the answer is negative and for Y-M couplings
the situation is as yet undecided (see later).

It is somewhat surprising that the much more physical screening picture for massive
vectormesons did not take hold in the 70s [71]. A possible explanation is perhaps that
the incorrect idea that massive vectormesons are only renormalizable if they receive their
mass through a Higgs mechanism in the sense of a broken symmetry took hold more
rapidly than more critical ideas. From a modern point of view the Higgs model is the
nothing else than a renormalizable model which couples a massive vectormeson to massive
scalar real field 34; metaphoric pictures as spontaneous symmetry breakings only detract,
and even the correct Schwinger-Swieca screening in terms of a screened Maxwell charge
is a pons asini albeit one which is not in contradiction with known facts.

The idea of a scalar particle like the Dear Lord gives ”massive life” to poor massless
creatures (presumably including the scalar itself) i.e. the metaphoric fattening idea from
spontaneous symmetry breaking does not become less metaphoric when CERN uses it to
sell its experimental result. The necessity to sell expensive experiments to the public by
using God’s name could be damaging to particle physics. It puts unnecessary strain
on experimentalists to verify theoretical ideas for which for more than 4 decades no
alternative more foundational idea was developed. It is an interesting question whether
this stagnation could not have been avoided if the sociological success of ST did not make
particle physics susceptible to metaphoric presentations.

As mentioned, in the BRST treatment of massive selfcoupled Y-M vectormesons one
needs such a scalar coupling [65], but as a result of the limitations of this method one has
to wait for a confirmation from the adiabatic equivalence formulation in the stringlocal
Hilbert space formulation based on physical principles rather than prescriptions. With
or without such a real (Higgs) field, in any case the Maxwell current (the current which
appears on the right hand side of the divergence of F ) according to the previous theorem
is always screened and the only kind of symmetry breaking is the absence of Z2 sym-
metry as a result of the appearance of odd terms in the consistent couplings of massive
vectorpotentials with real scalar field (completely determind by renormalizability [65]).
This is in complete agreement with recent findings in [74] since in all massive vectorme-
son models, no matter by which method they have been obtained, it is a fact that the
identically conserved Maxwell current which appears on the right hand side of the diver-
gence of the curl of the massive vectorpotentials always leads to a screened charge. Other
conserved currents in the theory are of course not screened. From the viewpoint of the
adiabatic equivalence in the Hilbert space, the necessity of an additional scale field for
obtaining consistent renormalizable massive Y-M couplings does not look very plausible.
But this problem should be carefully scrutinized, since an implausible appearance is not

34All strictly renormalizable models are uniquely determined by their field content; the concrete form
follows from renormalization [65].
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an argument in such a conceptually subtle region of QFT.
A second issue which is not yet on safe grounds in the sense mathematical physics,

is the confirmation of asymptotic freedom through the property of the beta-function
which appears in the parametric Callen-Symanzik equation for correlation functions. The
existing calculation methods first establish the C-S equations in massive theories and then
argue that since the beta function is independent of masses, the same beta must also be
valid in the zero mass limit if it exists. This suggests to derive the C-S equation in the
string-localized formulation which at the time of writing of this paper has not been done
yet. It may be easier to do this in the more familiar Krein formulation since many second
order computations have already been done in that setting. Even though that pointlike
formulation has no massless limit, beta functions in parametric C-S differential equations
are interesting in their own right, simply because they have not been done.

Perturbative beta functions from analytic continuation in the spacetime dimension
without correlations and C-S equations by claiming that the theory has no perturbative
prescription for long distances35 simply lacks credibility especially when one already knows
that a zero mass pointlike description does not exist. Infrared-finite string-localized pre-
scriptions are expected to be behind the on-shell infrared divergecies as they occur e.g. in
QED. Whether they also bear on confinement problems is not known. Since the divergence
of perturbative series (including string localization) has no bearing on the nonperturba-
tive existence and its properties, the infrared convergence of off-shell perturbation theory
has no direct information about the nature of confinement.

In stringlike cases the mathematical description in terms of off-shell correlation func-
tions may not be enough for the physical interpretation. Even in a string-localized for-
mulation of QED with off-shell correlations of charge matter fields, one lacks a spacetime
idea how to relate the string-localized ”infraparticle” fields with particle-like on-shell ob-
jects and their scattering processes. The description of scattering of electrically charged
particle in terms of recipe for photon-inclusive cross sections which starts with the Bloch-
Nordsiek model reached a form of useful covariant recipes for given photon resolution in
the Yenni-Frautschi-Suura formalism. But compared with the spacetime-based LSZ reduc-
tion formalism these successful descriptions always appeared somewhat contrived. Ideas
to derive them from spacetime localization principles based on the Huygens property go
back to early work by Buchholz [3] and they were recently taken up again. There is a good
chance that they may bridge the conceptual abyss between the well-understood scattering
formalism for situations with mass gaps and the conceptually much lesser understood pre-
scriptions in the case of presence of massless vector potentials. In [37] Buchholz reports on
an impressive new attempt which is based on a distinction between superselection sector
and charge classes and which ”tames” the unwieldy soft photon clouds. They are re-
moved by restricting states to the (any) forward light cone. The so-restricted equivalence
classes of states describe charge classes which cut-off the infinite infrared clouds in an
observer-independent intrinsic way; through them the infraparticle aspect disappears and
gives way to particles with sharp masses without ever to have to introduce ad hoc infrared
cutoffs and photon resolutions. The analysis of charge classes leads to compact symmetry
groups in analogy to the case with mass gaps. But the study of this connection between

35The correct statement would be that it has off-shell infrared divergencies in the (nonexisting) pointlike
description.
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the string-localized perturbation theory and string-free scattering for charged classes is
still a problem of future research. In any case the connection between string-localized
massive theories and their massless limit has no on-shell counterpart.

The reader may wonder why the word ”supersymmetry” occurred in this paper only in
connection with the solution of the mathematical Majorana problem (the infinite compo-
nent ”superstring representations” of the Poincaré group) and not with particle physics.
There is a simple answer; whereas the main physical motivation for supersymmetry,
namely the improvement of short distance properties in order to increase the range of
renormalizability, turned out to be an illusion, the use of string-localized fields in Hilbert
space really adds to the finite number of pointlike renormalizable couplings infinitely many
renormalizable stringlike interactions for higher spin field. Of course not all of them pos-
sess compactly localized observable subalgebras which seems to be the prerequisite for
their physical acceptance.

4 Generators of wedge algebras, extension of Wigner

representation theory in the presence of interac-

tions

Theoretical physics is one of the few areas of human endeavor in which the identification
of an error may be as important as the discovery of a new theory. This is especially the
case if the committed error is related to a lack of understanding or misunderstanding of a
central principle as causal localization. Whereas off-shell analytic properties of correlation
function were systematically analyzed in the pathbreaking work of Bargmann, Hall and
Wightman, it was already clear at the time of the dispersion relations that on-shell analytic
properties are of a different conceptual caliber and that the field-particle relation coming
from LSZ scattering theory is not sufficient for for their understanding. In some special
cases of elastic scattering the application of the intricate mathematics of several complex
variables and the formation of natural analytic extensions [14] led to a proof of the crossing
analyticity. But the derivation did not reveal much about what we know nowadays,
namely that particle crossing identity is closely related (and in fact can be derived from)
to the KMS identity of modular wedge localization. The main difference to the Unruh
effect is that that one has to convert field states in the presence of interactions into particle
states; but this again can be achieved in terms of modular localization.

Only after the arrival of modular localization and its role in the construction of d=1+1
integrable models for the spacetime identification of the Zamolodchikov algebra structure
[68][69], the understanding of these properties began to improve. The crucial step was
the realization that the S-matrix was not only an operator resulting from time-dependent
scattering theory (which it is in every QT), but also a relative modular invariant of
wedge-localized algebras. This led to the idea that the crossing property and its analytic
aspects in terms of particle rapidities are a result of a particle translation of the analytic
KMS identity for operators localized in the wedge, for which the analyticity refers to
the hyperbolic angle of the wedge-preserving Lorentz transformation. The derivation of
the crossing relation from the same modular localization principle which solves the E-J
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conundrum and explains the Unruh effect is surprising; this and some remarks on a closely
related proposal for a general on-shell construction [10] (which extends the successful
construction of integrable models from the structure of their generators of wedge algebras
[23]) is the topic of this section.

In this way the original aim of Mandelstam’s on-shell project for finding a route to
particle theory, which is different to quantization and perturbation theory and stays closer
to directly observational accessible objects, is recovered, and the picture puzzle trap of
ST (section 2) which led to wrong understandings of crossing is avoided. It is closely
related to the top-to-bottom oriented LQP setting in which the desired concepts are laid
down before their mathematical and computational implementation starts; this is opposite
to quantization approaches were the properties of objects and their interpretation come
to light only after having done the calculations. Besides aspects which are accessible by
quantization, there are also properties which cannot be understood in this way, as the E-J
conundrum or other thermal36 aspects of modular localization as the Unruh and Hawking
effects, as well as localization-caused entropy which characterize the modular statistical
mechanics aspect of localized ensembles. This section adds the particle crossing and
the closely related on-shell construction method to these properties whose understanding
requires the use of the modular localization principle.

In retrospect it is clear why Mandelstam’s project had no chance to succeed in the
60s and 70s; the necessary conceptual tools were not available at a time in which the
impressive success of renormalized perturbation was still very much on peoples mind, and
QFT was considered simply as that theory behind Lagrangian/functional quantization.

The most difficult aspect of modular localization is the comprehension of the big
separation it creates between particles and fields in the presence of interactions. Whereas
these two concepts are related in a functorial way in the absence of interactions, the
presence of interactions separates them in such a way that it takes great conceptual efforts
to understand what kind of connection is left. This effort goes significantly beyond the
use of modular localization needed for the E-J conundrum and Unruh-Hawking effects.
It starts with observation that the S-matrix is not only that well-known object resulting
from the well-understood relation between the large time asymptotic behavior of fields
with particles (which it is in any QT). In modular localizable theories as QFT, it is also a
relative modular invariant associated with the structure of an interacting wedge algebra
relative to its free counterpart (generated by incoming fields) which represents the needle’s
pin through which particles become related with interacting fields.

In order to motivate the reader to enter a journey which takes him far away from text-
book QFT, it is helpful to start with a theorem which shows that the familiar particle-field
relations breaks down in the presence of any interaction. The following theorem shows
that the separation between particles and interacting localized fields and their algebras is
very drastic indeed [10]:

Theorem 3 (Mund’s algebraic extension [75] of the old J-S theorem [27]) A Poincaré-
covariant QFT in d ≥ 1+2 fulfilling the mass-gap hypothesis and containing a sufficiently

36Here thermal is not necessarily referring to what can be measured with a thermometer [6] but rather
characterizes the specific KMS (modular) impurity which results from a A(O)-restriced vacuum.



CBPF-NF-002/13 41

large set of ”temperate” wedge-like localized vacuum polarization-free one-particle genera-
tors (PFGs) is unitarily equivalent to a free field theory.

It will be shown in the following that the requirement of temperateness of generators
(Schwartz distributions, equivalent to the existence of a translation covariant domain for
PFG’s [76]) is very strong, it only allows integrable models and integrability in QFT
can only be realized in d=1+1. Note that Wightman fields are assumed to be operator-
valued temperate distributions. Hence the theorem says that even in case of a weak
localization requirement (such as wedge-localization), one cannot find interacting PFGs
with translation invariant domain properties. However any QFT permits wedge-localized
nontemperate generators [76]. The theorem has a rich history which dates back to Furry
and Oppenheimer’s observation (shortly after Heisenberg’s discovery of localization-cause
vacuum polarization) that Lagrangian interactions always lead to fields which, if applied
to the vacuum, inevitably create a particle-antiparticle polarization cloud in addition to
the desired one-particle state.

The only remaining possibility to maintain a relation between a polarization-free
generator (PFG) leading to a pure one-particle state and a localized operator (represent-
ing the field side) has to go through the bottleneck of nontemperate PFG generators of
wedge-localized algebras; this is all which remains of the functorial particle-field relation
between Wigner particles and fields. It makes the extension of the Wigner idea of using
representation theory in the presencence of interactions (the on-shell construction project)
very subtle since one has to use wedge-localized multiparticle states from the beginning.

The idea is to construct a kind of ”emulation” of wedge-localized free incoming fields
(˜particles) inside the interacting wedge algebra as a replacement for the nonexisting
second quantization functor for Wigner particles. As the construction of one-particle
PFGs, this is achieved with the help of modular localization theory.

The starting point is a bijection between wedge-localized incoming fields operators and
interacting operators [47][10]. This bijection is based on the equality of the dense subspace
which these operators from the two different algebras create from the vacuum. Since the
domain of the Tomita S operators for two algebras which share the same modular unitary
∆it is the same, a vector η ∈ domS ≡ domSA(W ) = dom∆

1
2 is also in domSAin(W ) = ∆

1
2

(in [76] it was used for one-particle states). In more explicit notation, which emphasizes
the bijective nature, one has

A |0〉 = AA(W ) |0〉 , A ∈ Ain(W ), AA(W ) ∈ A(W ) (31)

S(A)A(W ) |0〉 = (AA(W ))
∗ |0〉 = SscatA

∗S−1
scat |0〉 , S = SscatSin

SscatA
∗S−1

scat ∈ Aout(W )

Here A is either an operator from the wedge localized free field operator algebra Ain(W )
or an (unbounded) operator affiliated with this algebra (e.g. products of incoming free
fields A(f) smeared with f, suppf ∈ W ); S denotes the Tomita operator of the interacting
algebra A(W ). Under the assumption that the dense set generated by the dual wedge
algebra A(W )′ |0〉 is in the domain of definition of the bijective defined ”emulats” (of
the wedge-localized free field operators inside the interacting counterpart) the AA(W ) are
uniquely defined; in order to be able to use them for the reconstruction of A(W ) the
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domain should be a core for the emulats. Unlike smeared Wightman fields, the emulats
AA(W ) do not define a polynomial algebra, since their unique existence does not allow to
impose additional domain properties as successive applicability; in fact they only form a
vector space, and the associated algebras have to be constructed by spectral theory or
other means for the extraction of an algebra from a vector space of closed operators.

Having settled the problem of uniqueness, the remaining task is to determine their
action on wedge-localized multi-particle vectors and to obtain explicit formulas for their
particle formfactors. All these problems have been solved in case the domains of emulats
are invariant under translations; in that case the emulats possess a Fourier transform [76].
This requirement is extremely restrictive and is only compatible with d=1+1 elastic two-
particle scattering matrices of integrable models37; in fact it should be considered as the
foundational definition of integrability of QFT in terms of properties of wedge-localized
generator [10].

Since the action of emulats on particle states is quite complicated, we will return to
this problem after introducing some useful notation.

For integrable models the wedge duality requirement (??) leads to a unique solution
(the Zamolodchikov-Faddeev algebra), whereas for the general non-integrable case we will
present arguments, which together with the comparison with integrable case determine
the action of emulates on particle states. The main additional assumption is that the
only way in which the interaction enters this construction of bijections is through the
S-matrix38 which amounts to saying that a LQP (but not its coordinatization in terms of
fields) is uniquely determined in terms of the S-matrix. With this assumption the form
of the action of the operators AA(W ) on multiparticle states is fixed. The ultimate check
of its correctness through the verification of wedge duality (??) is a difficult problem left
to future investigations.

Whereas domains of emulats in the integrable case are translation-invariant [76], the
only domain property which is always preserved in the general case is the invariance of the
domain under the subgroup of those Poincaré transformations which leave W invariant.
In contrast to QM, for which integrability occurs in any dimension, integrability in QFT
turns out to be restricted to d=1+1 factorizing models [76][10].

A basic fact in the derivation of the crossing identity, including its analytic properties
which are necessary in order to return to the physical boundary, is the cyclic KMS prop-
erty. For three operators affiliated with the interacting algebra A(W ) (two of them being
emulates of incoming operators39) it reads:

37This statement, which I owe to Michael Karowski, is slightly stronger than that in [76] in that that
higher elastic amplitudes are combinatorial products of two-particle scattering functions, i.e. the only
solutions are the factorizing models.

38A not unreasonable assumption because this is the only interaction-dependent object which enters
as a relative modular invariant the modular theory for wedge localization.

39There exists also a ”free” KMS identity in which B is replaced by (B)Ain(W ) so everything refers

to the algebra Ain(W ). The derivation of the corresponding crossing identity is rather simple [10] and
closely related to the Wick-ordering formalism..
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〈
0|BA(1)

A(W )A
(2)
A(W )|0

〉
KMS(A(W ))

=
〈

0|A(2)
A(W )∆BA

(1)
A(W )|0

〉
(32)

A(1) ≡: A(f1)...A(fk) :, A
(2)
in ≡: A(fk+1)...A(fn) :, suppfi ∈ W

where in the second line the operators were specialized to Wick-ordered products of
smeared free fields A(f) which are then emulated within A(W ). Their use is necessary in
order to convert the KMS relation for A(W ) into an identity of particle formfactors of the
operator B ∈ A(W ). If the bijective image acts on the vacuum, the subscript A(W ) for
the emulats can be omitted and the resulting Wick-ordered product of free fields acting
on the vacuum describes a multi-particle state in f̂i momentum space wave functions.
The roof on top of f denotes the wave function which results from the forward mass shell
restriction of the Fourier transform of W-supported test function. The result are wave

functions in a Hilbert space of the graph norm
(
f̂ , (∆ + 1) f̂

)
which forces them to be

analytic in the strip 0 < Imθ < π.
The easy part in the particle transcription of the KMS relation (32) is the right hand

side. Letting the hermitian conjugate of ∆
1
2A

(2)
A(W ) act on the bra vacuum and using its

modular representation (31) one obtains an outgoing n-k state in which the particles have

been changed into their antiparticles; the application of the remaining ∆
1
2 amounts to

an analytic continuation of the antiparticle rapidities by iπ so that the net result is the
analytically continued formfactor of B between a n-k outgoing bra antiparticle state and
an incoming k-particle state.

As will be seen the left hand side in (32) can, under special ordering conditions for
the n rapidities, be replaced by an n-particle incoming vector which then represents the
desired crossing relation. For simplicity of notation we specialize to d=1+1 in which case
neither the wedge nor the mass-shell momenta have a transverse component and particles
are characterized by their rapidity. Up to now the KMS relation only reads∫

..

∫
f̂1(θ1)...f̂1(θn)F (k)(θ1, ..., θn)dθ1...dθn = 0 (33)

F (k)(θ1, .., θn) :=
〈

0
∣∣∣BA(1)

A(W )(θ1, .., θk)
∣∣∣ θk+1, .., θn

〉
in
−

− out

〈
θ̄k+1, .., θ̄n

∣∣∣∆ 1
2B
∣∣∣ θ1, .., θk

〉
in

where θ̄ refers to antiparticle rapidities and the ∆
1
2 of ∆ was used to re-convert the

antiparticle wave functions in the outgoing bra vector back into the original particle wave
functions [10].

There are two steps which remain to be shown

1. For ordered rapidities θ1 > ... > θn〈
0
∣∣∣BA(1)

A(W )(θ1, .., θk)
∣∣∣ θk+1, .., θn

〉
in

= 〈0 |B| θ1, .., θn〉in

2. F (k) is locally square integrable
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The first property is part of an analytic interpretation: the n-particle component of
a local operator is the boundary value of a multivalued function in the multivariable
θ space. One uses the statistics degeneracy of the n-particle vector to encode it into
the θ-ordering; any other order correspond to another boundary value of the formfactor
which results from the particular analytic continuation used to arrive at the re-ordered
θ-configuration. Its physical interpretation is very different from the original n-particle
interpretation in fact in general the new object represents a new state40. The derivation
of the crossing identity does not require an operational identification of other boundary
values because the ordering of the θ remains fixed (fixed L2 wave functions with ordered
support) in the derivation of the crossing identity. The only place where a physical idea
enters in addition to the KMS identity is in the assumption that the singularies near
the boundary are exhaused by the known multiparticle threshold cuts. Without knowing
anything about the distributional nature of boundary values (in this case the local L2

integrability) one cannot use the L2 denseness property of wedge-localized wave functions.
For the formulation of an on-shell construction project one needs more. The only

known way goes via an assumption about an operational interpretation of the analytic
reordering i.e. about the operational meaning of analytic θ-reorderings in states and their
possible dependence on the analytic path taken to get to the reordered configuration.
This is tantamount to knowing the action of a PFG or a more general emulat on particle
states beyond the vacuum. The guiding idea is that if one rapidity, say the first one in
an n-particle state, is outside its ordered position then the commutaion with a k-particle
cluster which is necessary to get it their only depends on this k-cluster and is described
in terms of a ”grazing shot” S-matrix in which there is no direct interaction within the
cluster but only that part of the interaction which the θ1 causes in order to bring it into
its ordered position. The implementation of this idea requires some new concepts and
necessitates abbreviated notation in order to avoid messy formulas. It did not yet path
its crucial test of ”wedge duality” which would show its correctness.

However for d=1+1 integrable models it undergoes a significant simplification which
allows to check the wedge-duality property. In this case the on-shell generating PFGs
of the interacting wedge algebra fulfill the commutation relations of the Zamolodchikov-
Faddeev algebra [68][69] and can be used to construct the compact localized double cone
algebra and in this way show the mathematical existence of QFTs with realistic strictly
renormalizable short-distance behavior [23] (the first time in the long almost 90 year old
history of QFT).

5 Resumé and concluding remarks

The main point of the present work was to explain why the important project of a mass-
shell based top-to-bottom approach in particle theory took a wrong turn when, as a
consequence of the insufficient understanding of the relation between on-shell analytic
properties and the intrinsic localization properties of local quantum physics at that time,
the dual model crossing was mistakenly accepted as describing the on-shell particle cross-

40For explanatory simplicits we use the terminology ”state”, but in reality we talk about what happens
to formfactors when their particle rapidities are being analytically continued.
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ing. In order to underline the subtlety of this issue it was useful to go back to the
beginnings of QFT and point to a non-understood aspect of the E-J conundrum: the
modular localization property as the defining property of LQP i.e. of QFT unchained
from quantization.

Looking back at the attempts of the 60s with present hindsight, it is clear that there
was not much of a chance at that time for understanding the subtle conceptual nature of
analytic on-shell properties and in particular the role particle crossing property in an on-
shell construction project. This also means that after having obtained the meromorphic
dual model functions there was no chance to get out of the mentioned picture puzzle trap.
Finding structures by by mathematical imagination on a subject for which the time of
its physical conceptual understanding has not yet arrived is not without a risk, this is
the other side of a ”gift from the 21st century which fell by chance onto the 20th”. If one
follows Feynman’s ”jump into the conceptual blue yonder” one better makes sure that
one starts from a solid vantage point to which one can return if the jump, as it is often
the case, does not lead to tangible results. In case already this vantage point is on shaky
grounds, as in the case of analytic on-shell properties and ideas about particle crossing
in the 60s, there is little chance of a return. This seem to be the rational explanation
why even bright people who entered ST do not find a way out. Many decades of work
which only produced metaphoric derivatives of ST as M-theory, extra dimensions, etc.
have produced an avalanche of problems without solutions, so that what was claimed
as ”progress” only consisted of producing even more bizarre problems. In no epoch of
particle theory was the relation between problem production and problem solution as
extreme as presently.

The mathematical content of ST is the construction of a 10 parametric infinite com-
ponent one particle representation of the Poincaré group (the superstring representation)
on the oscillator algebra of a supersymmetric 10 component chiral current model. This is
an unexpected and therefore interesting mathematical fact since those QFT models which
are relevant for particle physics always describe in addition to discrete one-particle states
a scattering continuum. It was pointed out in section 2 that this is the only known solu-
tion of a project formulated by Majorana: the search of an irreducible algebraic structure
which contains a relativistic infinite component field equation. Several particle theorists,
who were pursuing the same project in the 60s and ended (as Majorana) empty-hand,
never noticed that ST found precisely one realization.

Even if the string theorists had noticed that by chance they discovered a solution to
an old problem, they would have been hardly interested since they wanted to advance
Mandelstam’s dynamic S-matrix-based on-shell project. Instead they got stuck with the
picture puzzle aspect of the relation between the (d, s) scale-dimension spectrum in a
conformal QFT and (m2, s) Poincaré group representation spectrum. This created the
impression of having come across a deep new theory which describes not only the interac-
tion of known particles but also contained the theory of gravity (a theory of everything).
The problem is that with only mathematical rigor, but no conceptual frame which reveals
the connection between the causality principles expressed in terms of fields or operator
algebras, it is not really possible to formulate an S-matrix driven on-shell project. On the
other hand, not knowing these subtle properties or not being bound by them, one runs
the danger of creating a rich mathematical consistent physical fantasy world.
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What made the situation even more muddled, is the fact that mathematicians were
able to abstract from the rather loose pictures of the string theorists valuable mathemat-
ical ideas, which in many cases string theorists in turn took as a confirmation that they
were working on a deep, albeit somewhat mysterious new physical theory.

The correct understanding of particle crossing was not possible without perceiving
the new role of the S-matrix as a relative modular invariant between the free incoming
and the interacting wedge-localized subalgebra. In this way the derivation of the particle
crossing identity became an important part of in the formulation of a new constructive top-
to-bottom approach which starts from the classification and construction of generators
of wedge-localized algebras from a known S-matrix41 and aims to construct the net of
compact localized from nontrivial intersections. It was successful for integrable models,
for which it leads to existence proofs and provides the setting for explicit calculations.
Integrable models are limited to d=1+1 dimensions, but present an interesting theoretical
laboratory for a future nonperturbative access to general models of QFT.

A comprehensive analysis of the causes of the existing deep schism within particle the-
ory is not possible without looking also at sociological aspects. The appearance of wrong
or useless theoretical constructs in a highly speculative area as particle theory is nothing
new; the real problem is to understand why the dual model and ST, unlike numerous other
failed ideas (”peratization”, ”Reggeization”, SU(6), infinite component fields, Lee-Wick
theory,...), succeeded to hold on for almost 5 decades despite demonstrable conceptual
misunderstandings. A possible answer is that the memory about its conceptual roots as
an on-shell construction project in local quantum physics got lost after almost 5 decades.
The main damage caused by ST to particle theory is not coming from its errors but
rather from the confusion it created about true string-localization whose undestanding
is pivotal to formulate renormalizable interactions for any spin, in particular for massive
vectormesons (section 3).

When, as a result of new ideas about analytic on-shell properties and their algebraic
formulation from modular localization, on-shell construction ideas returned at the end of
the 90s, string theory had already lost its connection to its own roots. Already during the
80s, ST begun meandering through conferences and journals by creating its own label in
order to disconnect itself from its roots from in the strong interaction S-matrix project
of the 60s. In this deliberate ahistorical self-presentation, it succeeded to convince many
newcomers to particle theory that it presents the wave of the future (theory of everything),
with QFT being assigned the role of a footnote. The conceptual differences between new
foundational insights about on-shell constructions (as presented in the present paper) and
ST became irreconcilable.

Among the theoreticians who followed the foundational developments of local quantum
physics it is hard to meet anybody who is not aware that ST and most of its derivatives
(the Maldacena conjecture, brane physics, embeddings of one QFT into a higher dimen-
sional one and its inverse: dimensional Kaluza-Klein reduction) are results of a conceptual

41Apart from the bootstrap construction of scattering functions for integrable models, the construction
of an S-matrix cannot be separated from the construction of the wedge generator using the sytem of
equations which follow from wedge duality. The hope is that the combined on-shell equations, unlike
the standard off-shell perturbation theory, permit a convergent iteration which determines the S-matrix
together with the wedge generators.
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flaw which resulted from a muddled view about localization in QFT in comparison to QM.
Attempts to explain to string theorists why the Maldacena conjecture is incorrect in terms
of the impossibility to encounter physically acceptable models on both sides of the AdS-
correspondence end always in impasse; either because the concepts used are outside the
understanding of ST, or the discussion ends by claiming that the ”German correspon-
dence” (referring to Rehren’s theorem) has no bearing on Maldacena’s conjecture. For
the first time in the history of particle physics a whole community got into a standoff
situation in which its conceptual resources are insuffient to liberate themselves from their
self-created scientific isolation.

Perhaps the schism has even deeper philosophical roots in the way particle research
was conducted. Since Dirac’s successful extraction of antiparticles from the later aban-
doned ”hole theory”, the method of research consisted in starting a computation and
thinking about necessary modification ”as one moves along”. Often correct discoveries
were made in settings which later turned out to be incorrect. This trial and error method
was for several decades extremely successful; most of the impressive results in particle
physics after world war II were obtained in this way. More foundational directed research
projects also existed parallel to this mainstream method; the oldest project was Wigner’s
1939 classification of one-particle wave function spaces in terms of the representation the-
ory of the Poincaré group, followed by Wightman’s operator-valued distribution setting
(shortly after Laurant Schwartz pathbreaking mathematical work on singular functions)
and by Haag’s 1957 formulation of ”local quantum physics” in terms of nets of localized
operator algebras. But there was little mainstream motivation for getting interested in
such problems, as long as the ”compute, think and correct” way of conducting research
was successful42.

Cul de sac situations occasionally caused by ideas with little or no foundational support
were usually cleared up within the well-functioning traditional European ”Streitkultur”
(represented by great figures as Pauli, Jost, Lehmann, Kallen, Landau,..) which at that
time also took roots in the US (Oppenheimer, Feynman, Schwinger, Dyson,..). But this
way of keeping viable progress going disappeared in the 70s. It may not be accidental,
that after developing the Standard Model within the setting of gauge theories, the rate
of genuine progress slowed down despite an increase in publications. In fact most of the
problems one confronts nowadays (the Higgs issue, long distance behavior, the precise
meaning of asymptotic freedom,...) were formulated and discussed in the 70s. This
suggests that the mentioned method of conducting research in particle theory may not be
working anymore, and that time has come for a new conceptual push. Fortunately at this
time one is not empty-handed, LQP has matured and is now ready to make contact with
important unsolved problems of interactions involving higher spins; the ideas in section 3
illustrate this point.

Nowhere has this dispute about the future of particle theory taken such extreme
ideological forms as that about Maldacena’s conjecture concerning the physical content
of the AdS-CFT correspondence. As explained in section 3.4, the correct mathematical
statement is that there is indeed an algebraic isomorphism, but that its physical content is
severely limited by the fact that (depending on what side one starts), either the resulting

42In more recent times Tegmark [97] proposed a more radical motto about how to conduct research in
ST and its derivatives.
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CFT violates the causal completion property (leading to the from nowhere into the causal
shadow entering of ”poltergeist” degrees of freedom, see section 2), or the degrees of
freedom of the resulting AdS theory remain below the cardinality of phase space degrees of
freedom which is necessary to obtain nontrivial compactly localized subalgebras (”anemia”
of degrees of freedom to populate a larger spacetime region). This is of course in agreement
with the impossibility to illustrate the phenomenon in terms of explicit models, since
Lagrangian quantization is formally in agreement with both aspects of causality. Although
Lagrangian quantization cannot reveal the mathematical existence since the renormalized
series diverges, one believes that its structural properties correctly mirror foundational
properties of QFT.

The insistence in the correctness of the Maldacena conjecture and the public use of
derogatory terminology as ”the German correspondence” for the proven theorem marks
the sociological depth of the schism. For most particle physicists with an awareness
about the past of their subject it is of course somewhat sad to see that the insights gained
in pre-electronic times into the connection between the causal completion property and
the cardinality of phase space degrees of freedom (see section 2) have succumbed to the
maelstrom of time in regard to the string-inspired generation. These insights had been
obtained at a time when progress was still available without such foundational knowledge
was not necessary since progress was still forthcoming without knowledge about QFT.
But now, when these post-quantization results are really needed (see section 3) they are
not available to the protagonists of the above conjecture and related subjects.

The situation is not so dissimilar from that in the financial markets; at the time when
the tools of deregulated capitalism were working, hardly anybody was interested to listen
to alternatives for what to do when one day they start tearing society apart. Apparently
not even surreal consequences [81] are able to prevent people from being addicted to
wrong conjectures as long as there is a sufficiently large community of subscribers. the
only occurrence which would be the beginning of the end of the ST and its derivatives is if
one of its main supporters and updaters begins to have scrupels about what they are doing
to science; but after more than 30 years of investments in ST this is even less probable
than a banker developing doubts about the ethical aspects of financial capitalism.

There is hardly anything more bizarre than the idea that we are living in a dimen-
sionally reduced 10 dimensional target space of a chiral conformal QFT. Attributing to
this observation the role of a key for understanding of the universe is not much different
than the ontological role attributed to the number 42 as an answer to the ultimate ques-
tion about ”Life, the Universe, and Everything” in Douglas Adam’s well-known scientific
fiction comedy ”the hitchhiker’s guide through the galaxy”.

In a way it is very fitting that a prize, which has been donated by somebody [82] who
profited from this kind of capitalism, is given to the kind of unproductive but entertaining
ST influenced particle theory which is sustained by ignorance about prior foundational
results. It opens the possibility to physicists to get rich in the same way as the finan-
cial players to which the sponsor of this prize belongs, namely by creating unproductive
toxic, and in case of particle physics, bizarre inventions. Usually the critique against
giving highly lucrative prizes to less than Nobel worthy observations can be dismissed as
resulting from envy of the person from whom the critique originated. But if the scientific
results are at variance with known facts such prizes reveal to critical minds and future
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historians serious doubts about the state of health about whether particle physics is able
to maintain its status it had since the days of Einstein, Heisenberg and others also also
in the new social surrounding of rampant capitalism.

Never in the history of physics before has an area of research lend itself that easily to
be used in entertainment and cinema as ST and its bizarre but entertaining derivatives as
extra dimensions and dimensional reduction [85]; the ST saga has been spread worldwide
on television by the former string-theorist Brian Green [86].

To feel the depth of the crisis into which large parts of particle theory has fallen, it is
helpful to be reminded of a quotation from Einstein’s talk in the honor of Planck [87].

In the temple of science are many mansions, and various indeed are they who dwell
therein and the motives that have led them thither. Many take to science out of a joyful
sense of superior intellectual power; science is their own special sport to which they look
for vivid experience and the satisfaction of ambition; many others are found in the temple
who have offered the product of their brains on this altar for purely utilitarian purposes.
Were an angel of the Lord to come and drive all these people belonging to these two
categories out of the temple, the assemblage would be seriously depleted, but there would
still be some men, of present and past times, left inside. Our Planck is one of them, and
that is why we love him. ...

But where has Einstein’s Angel of the Lord, the protector of the temple of science,
gone in the times of string theory and all its derivatives? With the continuation of the
old Streitkultur we would have had a chance to get out of this, in fact we may not even
have gotten into it.

Given that sociological situation with respect to ST and its derivatives, one should
not expect to get out of ST in the foreseeable future. It is more probably that the
ongoing progress about renormalization theory from string-localized higher spin fields, in
particular new insights about renormalization of vectorpotentials in massive and massless
s=1 models (indicated in section 3), could achieve such a revolution.

In the past it was easy to ignore the existing critical remarks, since no concerted efford
at a scientific critique of ST existed; people just expressed opinions about its bizarre
consequences or pointed to the decades passed without any experimentally accessible
consequences (Woit) and to other sociological-philosophical points (Smolin). Actually in
an older paper Smolin together with Arnsdorf came quite close to raise an important
scientific point [88]. These two authors, standing on the shoulders of Rehren, pointed at a
kind of conundrum between the consequences of the string-induced Maldacena conjecture
[81] and Rehren’s theorem [52]. This is precisely connected to the degrees of freedom
problem explained in section 2 and 3.

One can ask the question whether it is possible to modify the AdS-CFT setting,
so that an appropriately reformulated Maldacena’s conjecture can be saved from the
enormous pile of publications by establishing harmony with the rigorous theorem. This
is precisely the question Kay and Ortiz asked [89]. Taking their cue from prior work on
the correspondence principle of Mukohyama-Israel as well from ’t Hoofts brick-wall idea43

[90], these authors start with a Hartle-Hawking-Israel like pure state on an imagined

43This idea seems to imply a conjecture about the dependence of localization entropy of a fuzzy surface
which is expected to result as a theorem from the degrees of freedom picture which leads to the split
property.
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combined matter + gravity dynamic system. They then propose to equate the AdS side of
a hypothetical conformal invariant supersymmetric Yang-Mills model with the restriction
of the H-H-I state to a matter subsystem which is in accordance with Rehren’s theorem.
That this can be achieved is not very plausible (as the authors themselves admit).

Concerning defences of ST, one may refer to a recent paper by Duff [91] ”String and
M-Theory: Answering the Critics” within a project “Forty Years Of String Theory” where
the author basically musters all the names of well-known people (besides the hard core
string theorists) who, guided by their natural intellectual curiosity looked at ST and
whose first (and in most cases only) reaction was quite positive. Feynman’s name does
not appear there, which may be related to his well-known accusation of string theorist to
counter scientific critique by inventing excuses.

Further critical remarks will be left to the philosophers and historians of physics; the
50 years of unopposed derailment of parts of particle theory will provide ample material to
be analyzed. The future potentiality of QFT stands in contrast to the present sociological-
caused paralyzing schism within particle theory. Hopefully the present work succeeds to
draw attention to the enormous potential, which the good old QFT still has in store for
us if we are willing to engage in a pursuit of its foundations.

Acknowledgement : I am indebted to Bernard Kay for pointing to his attempt to
solve the Arnsdorf-Smolin conundrum. Thanks go also to Raymond Stora for explaining
the remaining problems of perturbative renormalization theory and to Jens Mund for
innumerous discussions about string-localized fields.
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