Target duality in $\mathcal{N}=8$ superconformal mechanics and the coupling of dual pairs

Marcelo Gonzales ${ }^{\dagger}$, Sadi Khodaee ${ }^{*}$, Olaf Lechtenfeld ${ }^{\times 0}$ and Francesco Toppan*
${ }^{\dagger}$ Carrera de Física
Universidad Autónoma Tomás Frías
Av. Del Maestro s/n, Casilla 36, Potosí, Bolivia
Email: marcbino@gmail.com
*TEO, CBPF
Rua Dr. Xavier Sigaud 150 (Urca)
Rio de Janeiro (RJ), cep 22290-180, Brazil
Emails: khodaee@cbpf.br, toppan@cbpf.br
${ }^{\times}$Institut für Theoretische Physik and Riemann Center for Geometry and Physics
Leibniz Universität Hannover
Appelstraße 2, 30167 Hannover, Germany
Email: lechtenf@itp.uni-hannover.de
${ }^{\circ}$ Centre for Quantum Engineering and Space-Time Research
Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germany

Abstract

We couple dual pairs of $\mathcal{N}=8$ superconformal mechanics with conical targets of dimension d and $8-d$. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous $(3,8,5)$ model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The $\mathcal{N}=4$ analog, joining an inhomogeneous $(1,4,3)$ with a $(3,4,1)$ multiplet, is also analyzed in detail.

1 Introduction and summary

\mathcal{N}-extended superconformal mechanics (for a review, see [1]) is defined on off-shell supermultiplets containing propagating bosons, fermions and auxiliary fields and, following the conventions of [2], being denoted by $(d, \mathcal{N}, \mathcal{N}-d)$. Their associated invariant actions define one-dimensional sigma models with a d-dimensional conical target manifold. The case of $\mathcal{N}=8$ has been studied less extensively than those with $\mathcal{N}=2$ or $\mathcal{N}=4$. However, in the literature one finds invariant actions for the supermultiplets $(1,8,7)[3,4],(3,8,5)[5,6]$ and $(5,8,3)[5,7]$. The $(2,8,6)$ model is free.

In this paper, we make use of a $d \leftrightarrow \mathcal{N}-d$ duality observed in [8] to couple for the first time two dually related superconformal mechanics. Depending on the target dimension d, for $\mathcal{N}=8$ the coupled systems are invariant under one of the four one-dimensional finite superconformal algebras $A(3,1), D(4,1), D(2,2)$ or $F(4)$. Their target manifold is a product of two asymptotically flat cones of dimension d and $8-d$ over the spheres S^{d-1} and S^{7-d}, respectively.

The possibility of consistently coupling dually related supermultiplets was first observed, for homogeneous supersymmetry transformations, in [9]. This produces $\mathcal{N}=8$ superconformal systems with targets of dimension $d=1+7,2+6$ or $3+5$ (the 4 -dimensional system is degenerate, and the dual of the 8 -dimensional system is empty). However, for the particular cases of ($\mathcal{N}=4, d=1$) and $(\mathcal{N}=8, d=3)$, an inhomogeneous deformation of the supersymmetry is admissible (see, e.g., [10] and [8], respectively). The presence of an inhomogeneity parameter is responsible for the appearance of a Calogero potential in the $\mathcal{N}=4, A(1,1)$-invariant, $(1,4,3)$ model and of a Dirac monopole in the $\mathcal{N}=8, D(2,1)$-invariant, $(3,8,5)$ model, as will be reviewed below. In these instances, a consistent superconformal coupling of the inhomogeneous supermultiplet with its (homogeneous) dual is nontrivial, as will be shown here. It requires the introduction of an extra supermultiplet of constants for half of the supersymmetries and leads to new superconformal interactions in the presence of a Calogero potential or a monopole. In particular, in all cases (homogeneous or not), an oscillator potential on each of the two cones is generated, with a frequency depending on the mutually dual coordinate.

The description of the models is given in a Lagrangian framework. By setting all fermionic fields to zero and eliminating the auxiliary fields, we are led to the dynamics of two interacting bosonic sigma models whose parameters are fixed by superconformal invariance. Passing to conical radial variables then reveals the geometry and the physical content of the coupled model. In this fashion, our results provide an extension of the class of known superconformal models.

Some interesting questions are left for future investigations. In particular, it seems quite plausible that the bosonic sector of the dually coupled models, whose parameters are fixed by superconformal invariance, turn out to be integrable, as a remnant of the off-shell invariant transformations.

The paper is structured as follows. After reviewing general features of $(d, 8,8-d)$ supermultiplets in Section 2, we present in Section 3 the superconformal pairing of dually related multiplets and work out the coupled Lagrangian in the case of homogeneous supersymmetry, ending up with the general bosonic potential on the cone product in the presence of Fayet-Iliopoulos terms. Sections 4 and 5 deal with the inhomogeneous ($3,8,5$) supermultiplet, its Dirac monopole background and the corresponding gauge transformations. In Section 6 , the dual $(5,8,3)$ supermultiplet is displayed, before Section 7 couples it to the inhomogeneous ($3,8,5$) model. Here one finds the central results of the paper. In Section 8 we reduce the coupled system back to the $(5,8,3)$ supermultiplet. Complete actions and the $\mathcal{N}=4$ coupling of the inhomogeneous $(1,4,3)$ supermultiplet with its dual $(3,4,1)$ partner are presented in detail in three Appendices.

2 Generalities for ($d, 8,8-d$) supermultiplets

$\mathcal{N}=8$ superconformal mechanical systems realize the one-dimensional global supersymmetry algebra

$$
\begin{equation*}
\left\{Q_{i}, Q_{j}\right\}=2 \delta_{i j} H \quad \text { with } \quad i, j=1, \ldots, 8 \quad \text { and } \quad H=\partial_{t} \tag{2.1}
\end{equation*}
$$

where t parametrizes the particle worldline. The corresponding supermultiplets are denoted by $(d, 8,8-d)$, indicating d propagating bosonic, 8 propagating fermionic and $8-d$ auxiliary bosonic coordinate functions for the superparticle, which thus moves on some d-dimensional target space parametrized by $x=\left\{x^{a} \mid a=1, \ldots, d\right\}$.

In the construction of $\mathcal{N}=8$ superconformal actions we can make manifest at most four of the eight supersymmetries. Picking by convention Q_{1}, Q_{2}, Q_{3} and Q_{8}, an $\mathcal{N}=4$ invariant action reads

$$
\begin{equation*}
S_{d}=\int \mathrm{d} t \mathcal{L}_{d}=\int \mathrm{d} t Q_{8} Q_{1} Q_{2} Q_{3} F(x) \tag{2.2}
\end{equation*}
$$

where $F(x)$ is a yet unconstrained function of all coordinates. The restriction to the manifest $\mathcal{N}=4$ superalgebra splits the $\mathcal{N}=8$ supermultiplet,

$$
\begin{equation*}
(d, 8,8-d) \longrightarrow\left(d_{1}, 4,4-d_{1}\right) \oplus\left(d_{2}, 4,4-d_{2}\right) \quad \text { with } \quad d_{1}, d_{2} \leq 4 \quad \text { and } \quad d_{1}+d_{2}=d \tag{2.3}
\end{equation*}
$$

and opposite chiralities. ${ }^{1}$ It turns out that the action depends only on two combinations of second derivatives of F, namely ${ }^{2}$

$$
\begin{equation*}
\Phi_{1}=-\Delta_{d_{1}} F \equiv-F_{11}-\ldots-F_{d_{1} d_{1}} \quad \text { and } \quad \Phi_{2}=\Delta_{d_{2}} F \equiv F_{d_{1}+1 d_{1}+1}+\ldots+F_{d d} \tag{2.4}
\end{equation*}
$$

where we grouped the coordinates according to the decomposition above.
To enhance to $\mathcal{N}=8$ invariance, we must impose

$$
\begin{equation*}
Q_{\ell} \mathcal{L}_{d}=\partial_{t} W_{\ell} \quad \text { for } \quad \ell=4,5,6,7 . \tag{2.5}
\end{equation*}
$$

This produces a harmonicity condition on F,

$$
\begin{equation*}
\Delta_{d} F \equiv \delta^{a b} F_{a b}=0 \tag{2.6}
\end{equation*}
$$

As a consequence, we have

$$
\begin{equation*}
\Phi_{1}=\Phi_{2}=: \Phi \quad \text { with } \quad \Delta_{d} \Phi=0 \tag{2.7}
\end{equation*}
$$

Clearly, for $d \leq 5$, we may take $d_{2}=1$ so that $\Phi=F_{d d}$, singling out the last coordinate. Hence, taking F to be harmonic, we obtain an $\mathcal{N}=8$ sigma model, with a conformally flat target space for the propagating bosonic coordinates,

$$
\begin{equation*}
\mathrm{d} s^{2}=\Phi(x) \delta_{a b} \mathrm{~d} x^{a} \mathrm{~d} x^{b} \tag{2.8}
\end{equation*}
$$

The remaining generators of the conformal $s l(2)$ algebra are realized as

$$
\begin{equation*}
K=-t^{2} \partial_{t}-2 t \lambda_{\varphi} \quad \text { and } \quad D=-t \partial_{t}-\lambda_{\varphi} \tag{2.9}
\end{equation*}
$$

[^0]on functions φ with engineering dimension $[\varphi]=\lambda_{\varphi}$. They give rise to 8 superconformal generators $[10,8]$
\[

$$
\begin{equation*}
\widetilde{Q}_{i}=\left[K, Q_{i}\right] . \tag{2.10}
\end{equation*}
$$

\]

Superconformal symmetry is imposed by also demanding that ${ }^{3}$

$$
\begin{equation*}
D \mathcal{L}_{d}=\partial_{t} M_{D} \quad \text { and } \quad K \mathcal{L}_{d}=\partial_{t} M_{K}, \tag{2.11}
\end{equation*}
$$

which yields two conditions on Φ, namely

$$
\begin{equation*}
[\Phi]=-1-2 \lambda_{x} \quad \text { and } \quad \Phi=\Phi(r) \quad \text { with } \quad r^{2}=\delta_{a b} x^{a} x^{b} \tag{2.12}
\end{equation*}
$$

The closure of the D -module representation for the $\mathcal{N}=8$ superconformal algebra determines a critical value for the engineering dimension of x,

$$
\begin{equation*}
\lambda_{x}=\frac{1}{d-4} \quad \Rightarrow \quad[\Phi]=-1-\frac{2}{d-4}=\frac{d-2}{4-d}=(2-d) \lambda_{x} . \tag{2.13}
\end{equation*}
$$

As a consequence, the conformal factor is indeed fixed to the proper harmonic expression,

$$
\begin{equation*}
\Phi(r)=r^{2-d} \tag{2.14}
\end{equation*}
$$

Introducing the spherical line element $\mathrm{d} \Omega_{d-1}$ on S^{d-1} and changing the radial coordinate via

$$
\begin{equation*}
\rho=\frac{2}{|4-d|} r^{(4-d) / 2}, \tag{2.15}
\end{equation*}
$$

the metric reads

$$
\begin{equation*}
\mathrm{d} s^{2}=r^{2-d}\left(\mathrm{~d} r^{2}+r^{2} \mathrm{~d} \Omega_{d-1}^{2}\right)=\mathrm{d} \rho^{2}+\frac{1}{4}(4-d)^{2} \rho^{2} \mathrm{~d} \Omega_{d-1}^{2} . \tag{2.16}
\end{equation*}
$$

It reveals the target space to be a specific cone over S^{d-1}, asymptotically flat with a linear relative deficit of $|4-d| / 2$. Its scalar curvature comes out as

$$
\begin{equation*}
R=\frac{1}{4}(d-1)(d-2)^{2}(d-6) r^{d-4}=(d-1)(d-2)^{2}(d-6)(d-4)^{-2} \rho^{-2}, \tag{2.17}
\end{equation*}
$$

which is negative for $d=3,5$ and positive for $d=7,8$. At $d=2,6$ we encounter flat space.
In any dimension d up to 8 , the manifest $\mathcal{N}=4$ superconformal algebra must be a particular member of the $D(2,1 ; \alpha)$ family. It turns out that the value of α is determined (up to an S_{3} automorphism) by the relation

$$
\begin{equation*}
\alpha=-\frac{1}{2}|4-d|=-\frac{1}{2\left|\lambda_{x}\right|} . \tag{2.18}
\end{equation*}
$$

In fact, only for the special values

$$
\begin{equation*}
\alpha \in\left\{-3,-2,-\frac{3}{2},-1,-\frac{2}{3},-\frac{1}{2},-\frac{1}{3}, 0, \frac{1}{2}, 1,2, \infty\right\} \tag{2.19}
\end{equation*}
$$

attained via (2.18) (and its S_{3} orbit) is $D(2,1 ; \alpha)$ extendable to an $\mathcal{N}=8$ superconformal algebra.

[^1]
3 Duality and coupling in the homogeneous case

From the results of the previous section, an obvious duality relates

$$
\begin{equation*}
d \leftrightarrow 8-d \quad \Leftrightarrow \quad \lambda_{x} \leftrightarrow-\lambda_{x} \quad \Leftrightarrow \quad\left\{r \leftrightarrow \frac{1}{r} \quad \text { and } \quad S^{d-1} \leftrightarrow S^{7-d}\right\} \tag{3.1}
\end{equation*}
$$

The self-dual point at $d=4$, however, represents a degenerate case, and the case of $d=0$ is empty. We summarize the values for all dimensions in the following table, which displays also the manifest $\mathcal{N}=4$ superalgebra \mathcal{G}_{4} and the full $\mathcal{N}=8$ superalgebra \mathcal{G}_{8} for each case.

d	0	1	2	3	4	5	6	7	8
Φ	r^{2}	r	1	r^{-1}	r^{-2}	r^{-3}	r^{-4}	r^{-5}	r^{-6}
λ_{x}	$-\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	∞	+1	$+\frac{1}{2}$	$+\frac{1}{3}$	$+\frac{1}{4}$
α	-2	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$-\frac{1}{2}$	-1	$-\frac{3}{2}$	-2
\mathcal{G}_{4}	$D(2,1)$	$D\left(2,1 ; \frac{1}{2}\right)$	$A(1,1)$	$D(2,1)$	$A(1,1)$	$D(2,1)$	$A(1,1)$	$D\left(2,1 ; \frac{1}{2}\right)$	$D(2,1)$
\mathcal{G}_{8}	$D(4,1)$	$F(4)$	$A(3,1)$	$D(2,2)$	-	$D(2,2)$	$A(3,1)$	$F(4)$	$D(4,1)$

The duality map indicated in (3.1) is easily performed by interchanging propagating and auxiliary bosons and flipping the direction of the supersymmetry transformations. If we summarily denote the propagating bosons, fermions and auxiliary bosons by x^{a}, ψ^{i} and f^{α}, respectively, and indicate the components of the dual multiplet by overtildes and lowered indices, the structure schematically takes the following form,

where the horizontal arrows encode the various supersymmetry transformations and the vertical arrows depict the duality relations.

We have essentially three different cases of such a duality for $\mathcal{N}=8$ superconformal theories:

$$
\begin{equation*}
(1,8,7) \leftrightarrow(7,8,1) \quad, \quad(2,8,6) \leftrightarrow(6,8,2) \quad, \quad(3,8,5) \leftrightarrow(5,8,3) \tag{3.2}
\end{equation*}
$$

The two members of each pair have different target dimensions but share the same superconformal algebra. For this reason, they can be coupled together in a Lagrangian

$$
\begin{equation*}
\mathcal{L}_{d+(8-d)}=\mathcal{L}_{d}+\mathcal{L}_{8-d}+\gamma \mathcal{L}_{d,(8-d)} \tag{3.3}
\end{equation*}
$$

with a coupling of dimensionless strength γ provided by a canonical pairing,

$$
\begin{equation*}
\mathcal{L}_{d,(8-d)}=x^{a} \tilde{f}_{a}+\psi^{i} \widetilde{\psi}_{i}-f^{\alpha} \widetilde{x}_{\alpha} \tag{3.4}
\end{equation*}
$$

Note that the dimensions in each pairing add up to one, and the duality guarantees the $\mathcal{N}=8$ superconformal invariance of the coupling term, as long as the transformations remain homogeneous. This is the case for $d=1$ and $d=2$. In three dimensions, there exists an inhomogeneous deformation
of the $(3,8,5)$ multiplet. When this is turned on, the coupling to the dual $(5,8,3)$ becomes less obvious. We will dwell on this point later on.

Let us take a look at the bosonic part of the Lagrangian in the homogeneous case. It takes the form

$$
\begin{equation*}
\mathcal{L}_{d+(8-d)} \mid=\Phi(r)\left(\dot{x}^{a} \dot{x}^{a}+f^{\alpha} f^{\alpha}\right)+\widetilde{\Phi}(\widetilde{r})\left(\dot{\tilde{x}}_{\alpha} \dot{\tilde{x}}_{\alpha}+\widetilde{f}_{a} \widetilde{f}_{a}\right)+\gamma\left(x^{a} \widetilde{f}_{a}-f^{\alpha} \widetilde{x}_{\alpha}\right) . \tag{3.5}
\end{equation*}
$$

We may add Fayet-Iliopoulos terms with dimensionful parameters μ_{α} and $\widetilde{\mu}^{a}$ to get

$$
\begin{equation*}
\mathcal{L}_{d+(8-d)}^{\prime}\left|=\mathcal{L}_{d+(8-d)}\right|+\mu_{\alpha} f^{\alpha}-\widetilde{\mu}^{a} \widetilde{f}_{a} . \tag{3.6}
\end{equation*}
$$

Eliminating the auxiliary components by their equations of motion,

$$
\begin{equation*}
f_{\alpha}=\frac{1}{2} \Phi^{-1}\left(\gamma \widetilde{x}_{\alpha}-\mu_{\alpha}\right) \quad \text { and } \quad \widetilde{f}^{a}=-\frac{1}{2} \widetilde{\Phi}^{-1}\left(\gamma x^{a}-\widetilde{\mu}^{a}\right) \tag{3.7}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
\mathcal{L}_{d+(8-d)}^{\prime \prime} \left\lvert\,=\Phi \dot{x}^{a} \dot{x}^{a}+\widetilde{\Phi} \dot{\widetilde{x}}_{\alpha} \dot{\widetilde{x}}_{\alpha}-\frac{1}{4} \Phi^{-1}\left(\gamma \widetilde{x}_{\alpha}-\mu_{\alpha}\right)\left(\gamma \widetilde{x}_{\alpha}-\mu_{\alpha}\right)-\frac{1}{4} \widetilde{\Phi}^{-1}\left(\gamma x^{a}-\widetilde{\mu}^{a}\right)\left(\gamma x^{a}-\widetilde{\mu}^{a}\right)\right., \tag{3.8}
\end{equation*}
$$

which features a very specific potential in the joint target space of both multiplets.
For a physical interpretation, it is useful to fix $\Phi(r)=r^{2-d}$ and $\widetilde{\Phi}=\widetilde{r}^{d-6}$ and pass to standard radial coordinates (up to a factor of $\frac{1}{2}$),

$$
\begin{equation*}
\rho(r)=\frac{2}{|4-d|} r^{(4-d) / 2} \quad \text { and } \quad \widetilde{\rho}(\widetilde{r})=\frac{2}{|4-d|} \widetilde{r}^{(d-4) / 2} . \tag{3.9}
\end{equation*}
$$

Introducing total angular momenta ℓ and $\widetilde{\ell}$ for the d - and ($8-d$)-dimensional targets and unit vectors via $x^{a}=r e^{a}$ and $\widetilde{x}_{\alpha}=\widetilde{r e} \widetilde{e}_{\alpha}$, one arrives at

$$
\begin{equation*}
\mathcal{L}_{d+(8-d)}^{\text {cone }} \left\lvert\,=\dot{\rho}^{2}+\frac{4 \ell^{2}}{|d-4|^{2}} \rho^{-2}+\dot{\tilde{\rho}}^{2}+\frac{4 \tilde{\ell}^{2}}{|d-4|^{2}} \widetilde{\rho}^{-2}-\frac{1}{4} \Phi^{-1}(\gamma \overrightarrow{\tilde{r}} \overrightarrow{\tilde{e}}-\vec{\mu})^{2}-\frac{1}{4} \widetilde{\Phi}^{-1}(\gamma r \vec{e}-\overrightarrow{\tilde{\mu}})^{2}\right., \tag{3.10}
\end{equation*}
$$

where $r=r(\rho)$ and $\widetilde{r}=\widetilde{r}(\widetilde{\rho})$ is understood. Apart from the standard angular momentum 'barriers', the potential for the coordinates r and \widetilde{r} is of oscillator type, centered around $\vec{r}=\overrightarrow{\vec{\mu}} / \gamma$ and $\overrightarrow{\vec{r}}=\vec{\mu} / \gamma$ and with (position-dependent) frequencies $\omega=\frac{\gamma}{2} \widetilde{\Phi}^{-1 / 2}$ and $\widetilde{\omega}=\frac{\gamma}{2} \Phi^{-1 / 2}$, respectively.

4 D-module representation of the $(3,8,5)$ supermultiplet

Let us adopt a convenient notation for the components of the $(3,8,5)$ multiplet:

$$
\left\{\begin{array}{ll}
\text { bosons } x^{a}: & x, y, z \text { or } x_{1}, x_{2}, x_{3} \tag{4.1}\\
\text { fermions } \psi^{i}: & \psi_{0}, \psi_{1}, \psi_{2}, \psi_{3}, \xi_{0}, \xi_{1}, \xi_{2}, \xi_{3} \\
\text { auxiliaries } f^{\alpha}: & f_{1}, f_{2}, g, g_{1}, g_{2}
\end{array} .\right.
$$

For simplicity, we lower all indices. According to the relations of Section 2, we have $\lambda_{x}=-1$ and $\alpha=-\frac{1}{2}$, so the $\mathcal{N}=4$ algebra $D\left(2,1 ;-\frac{1}{2}\right) \simeq D(2,1 ; 1) \simeq \operatorname{osp}(4 \mid 2)$ should get enlarged to an $D(2 \mid 2) \simeq \operatorname{osp}(4 \mid 4)$ algebra. For the conformal factor we expect $\Phi=\frac{1}{r}$.

A unique feature specific to $d=3$ is the option to deform the homogeneous superconformal transformations by a constant shift in some transformations of fermions to auxiliaries. Without
loss of generality, we choose a frame in which only the auxiliary coordinate g appears shifted, and only in the action of Q_{2}, Q_{3}, Q_{6} and Q_{7}. Hence, half of the deformation is taken to be contained in manifestly realized $\mathcal{N}=4$ supersymmetry.

The $\mathcal{N}=8$ transformations are captured in the following array:

	Q_{8}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}
x_{1}	ψ_{0}	ψ_{1}	ψ_{2}	ψ_{3}	ξ_{0}	ξ_{1}	ξ_{2}	ξ_{3}
x_{2}	ψ_{1}	$-\psi_{0}$	ψ_{3}	$-\psi_{2}$	ξ_{1}	$-\xi_{0}$	$-\xi_{3}$	ξ_{2}
x_{3}	ξ_{0}	$-\xi_{1}$	$-\xi_{2}$	$-\xi_{3}$	$-\psi_{0}$	ψ_{1}	ψ_{2}	ψ_{3}
ψ_{0}	\dot{x}_{1}	$-\dot{x}_{2}$	$-f_{1}$	$-f_{2}$	$-\dot{x}_{3}$	$-g$	$-g_{1}$	$-g_{2}$
ψ_{1}	\dot{x}_{2}	\dot{x}_{1}	$-f_{2}$	f_{1}	$-g$	\dot{x}_{3}	g_{2}	$-g_{1}$
ψ_{2}	f_{1}	f_{2}	\dot{x}_{1}	$-\dot{x}_{2}$	$-g_{1}$	$-g_{2}$	\dot{x}_{3}	$g+c$
ψ_{3}	f_{2}	$-f_{1}$	\dot{x}_{2}	\dot{x}_{1}	$-g_{2}$	g_{1}	$-g-c$	\dot{x}_{3}
ξ_{0}	\dot{x}_{3}	g	g_{1}	g_{2}	\dot{x}_{1}	$-\dot{x}_{2}$	$-f_{1}$	$-f_{2}$
ξ_{1}	g	$-\dot{x}_{3}$	g_{2}	$-g_{1}$	\dot{x}_{2}	\dot{x}_{1}	f_{2}	$-f_{1}$
ξ_{2}	g_{1}	$-g_{2}$	$-\dot{x}_{3}$	$g+c$	f_{1}	$-f_{2}$	\dot{x}_{1}	\dot{x}_{2}
ξ_{3}	g_{2}	g_{1}	$-g-c$	$-\dot{x}_{3}$	f_{2}	f_{1}	$-\dot{x}_{2}$	\dot{x}_{1}
f_{1}	$\dot{\psi}_{2}$	$-\dot{\psi}_{3}$	$-\dot{\psi}_{0}$	$\dot{\psi}_{1}$	$\dot{\xi}_{2}$	$\dot{\xi}_{3}$	$-\dot{\xi}_{0}$	$-\dot{\xi}_{1}$
f_{2}	$\dot{\psi}_{3}$	$\dot{\psi}_{2}$	$-\dot{\psi}_{1}$	$-\dot{\psi}_{0}$	$\dot{\xi}_{3}$	$-\dot{\xi}_{2}$	$\dot{\xi}_{1}$	$-\dot{\xi}_{0}$
g	$\dot{\xi}_{1}$	$\dot{\xi}_{0}$	$-\dot{\xi}_{3}$	$\dot{\xi}_{2}$	$-\dot{\psi}_{1}$	$-\dot{\psi}_{0}$	$-\dot{\psi}_{3}$	$\dot{\psi}_{2}$
g_{1}	$\dot{\xi}_{2}$	$\dot{\xi}_{3}$	$\dot{\xi}_{0}$	$-\dot{\xi}_{1}$	$-\dot{\psi}_{2}$	$\dot{\psi}_{3}$	$-\dot{\psi}_{0}$	$-\dot{\psi}_{1}$
g_{2}	$\dot{\xi}_{3}$	$-\dot{\xi}_{2}$	$\dot{\xi}_{1}$	$\dot{\xi}_{0}$	$-\dot{\psi}_{3}$	$-\dot{\psi}_{2}$	$\dot{\psi}_{1}$	$-\dot{\psi}_{0}$

The action for the $(3,8,5)$ multiplet reads

$$
\begin{equation*}
S_{3}=\int \mathrm{d} t \mathcal{L}_{3}=\int \mathrm{d} t Q_{8} Q_{1} Q_{2} Q_{3} F(x, y, z) \tag{4.3}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{x x}+F_{y y}+F_{z z}=0 \tag{4.4}
\end{equation*}
$$

and the conformal factor comes out as

$$
\begin{equation*}
F_{z z}=\Phi=\frac{1}{r} \quad \text { with } \quad r^{2}=x^{2}+y^{2}+z^{2} \tag{4.5}
\end{equation*}
$$

Without loss of generality, the z coordinate is singled out because we had to make a choice in the supersymmetry transformations.

The dependence on the inhomogeneous shift parameter c is linear, so we write

$$
\begin{equation*}
\mathcal{L}_{3}=\mathcal{L}_{3}^{(0)}+c \mathcal{L}_{3}^{(1)} \tag{4.6}
\end{equation*}
$$

After a lengthy but straightforward computation, we find

$$
\begin{equation*}
\mathcal{L}_{3}^{(0)}=\Phi\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}+f_{1}^{2}+f_{2}^{2}+g^{2}+g_{1}^{2}+g_{2}^{2}\right)+\text { fermionic terms } \tag{4.7}
\end{equation*}
$$

and

$$
\begin{align*}
\mathcal{L}_{3}^{(1)}= & \Phi g+A_{x} \dot{x}+A_{y} \dot{y}+ \tag{4.8}\\
& \Phi_{x}\left(\psi_{0} \xi_{1}+\psi_{1} \xi_{0}\right)+\Phi_{y}\left(\psi_{1} \xi_{1}-\psi_{0} \xi_{0}\right)-\Phi_{z}\left(\psi_{1} \psi_{0}+\xi_{1} \xi_{0}\right),
\end{align*}
$$

where we introduced

$$
\begin{equation*}
A_{x}=F_{z y} \quad \text { and } \quad A_{y}=-F_{z x} \tag{4.9}
\end{equation*}
$$

The complete expression of $\mathcal{L}_{3}^{(0)}$ is displayed in Appendix A. Setting all fermions to zero, we extract the bosonic part

$$
\begin{equation*}
\mathcal{L}_{3} \mid=\Phi\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}+f_{1}^{2}+f_{2}^{2}+g^{2}+g_{1}^{2}+g_{2}^{2}\right)+c\left(\Phi g+A_{x} \dot{x}+A_{y} \dot{y}\right) . \tag{4.10}
\end{equation*}
$$

We remark that only the z derivative of F appears, so it makes sense to define a prepotential

$$
\begin{equation*}
G:=F_{z} \quad \Rightarrow \quad G_{x}=-A_{y}, \quad G_{y}=A_{x}, \quad G_{z}=\Phi, \tag{4.11}
\end{equation*}
$$

which inherits the harmonicity from F.
It is admissible to slightly deform our model by adding Fayet-Iliopoulos terms. This extends the bosonic Lagrangian to

$$
\begin{equation*}
\mathcal{L}_{3}^{\prime}\left|=\mathcal{L}_{3}\right|+\mu_{\alpha} f_{\alpha}+\zeta g+\zeta_{\alpha} g_{\alpha} \quad \text { with } \quad \alpha=1,2 \tag{4.12}
\end{equation*}
$$

and five real parameters μ_{α}, ζ and ζ_{α}.
We solve the equations of motion for the auxiliary fields,

$$
\begin{equation*}
f_{\alpha}=-\frac{\mu_{\alpha}}{2 \Phi}, \quad g=-\frac{\zeta+c \Phi}{2 \Phi}, \quad g_{\alpha}=-\frac{\zeta_{\alpha}}{2 \Phi}, \tag{4.13}
\end{equation*}
$$

and eliminate them from the Lagrangian to arrive at

$$
\begin{equation*}
\mathcal{L}_{3}^{\prime \prime} \left\lvert\,=\Phi\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\frac{1}{4} \Phi^{-1}\left(\mu_{\alpha}^{2}+\zeta^{2}+\zeta_{\alpha}^{2}\right)-\frac{1}{2} c \zeta-\frac{1}{4} c^{2} \Phi+c\left(A_{x} \dot{x}+A_{y} \dot{y}\right) .\right. \tag{4.14}
\end{equation*}
$$

Apparently, there is not only a magnetic but also an electric field, together

$$
\begin{equation*}
B_{x}=c G_{x z}, \quad B_{y}=c G_{y z}, \quad B_{z}=-c\left(G_{x x}+G_{y y}\right)=c G_{z z} \quad \text { and } \quad E_{a}=-\frac{1}{4} c^{2} G_{z a}, \tag{4.15}
\end{equation*}
$$

both being simply proportional to the gradient of $G_{z}=\Phi$. With $\Phi=\frac{1}{r}$, we identify a magnetic monopole, while for the interpretation of the electric field we better pass to the conical coordinates,

$$
\begin{equation*}
r=\frac{1}{4} \rho^{2} \quad \Rightarrow \quad \mathrm{~d} s^{2}=\mathrm{d} \rho^{2}+\frac{1}{4} \rho^{2} \mathrm{~d} \Omega_{2}^{2} \quad \text { and } \quad A_{0}=c^{2} \rho^{-2} . \tag{4.16}
\end{equation*}
$$

The bosonic dynamics of this theory has been analyzed for general values of α in [12].

5 Gauge freedom

In order to explicitly write down the Lagrangian, we must 'integrate' Φ to find the prepotential G, from which the gauge potential A is obtained. The answer is not unique, due to abelian gauge invariance,

$$
\begin{equation*}
\delta A_{a}=\partial_{a} u \quad \text { and } \quad \delta G=v \tag{5.1}
\end{equation*}
$$

with a priori arbitrary harmonic gauge functions u and v. However, the invariance of $\Phi=G_{z}$ enforces $v_{z}=0$, and the relation between G and A_{a} connects the two functions,

$$
\begin{equation*}
u_{x}=v_{y} \quad \text { and } \quad u_{y}=-v_{x} . \tag{5.2}
\end{equation*}
$$

The (local) solution introduces another function $h(x, y)$ via

$$
\begin{equation*}
u=h_{y}(x, y)+\widetilde{u}(z) \quad \text { and } \quad v=h_{x}(x, y) \quad \text { with } \quad h_{x x}+h_{y y}=0 \tag{5.3}
\end{equation*}
$$

The harmonicity of u implies that \widetilde{u} is at most linear in z. Alternatively, we may interpret the above relation as Cauchy-Riemann equations for the real and imaginary part of a holomorphic function of $w=x+\mathrm{i} y$,

$$
\begin{equation*}
v-\mathrm{i}(u-\widetilde{u})=E(w)=: \partial_{w} H(w) \quad \Rightarrow \quad h=H(w)+\bar{H}(\bar{w}) \tag{5.4}
\end{equation*}
$$

where H and h are determined up to a constant. Therefore, the gauge freedom for the prepotential is encoded in a single holomorphic function E.

For the magnetic monopole there does not exist a globally regular gauge potential; we must be content with configurations on a 'northern' (N) and on a 'southern' (S) patch, related by a regular gauge transformation in the equatorial overlap. The standard expressions obtained from $G_{z}=\frac{1}{r}$ read

$$
\begin{array}{rllll}
G^{N}=+\ln (r+z) & \Rightarrow & A_{x}^{N}=G_{y}^{N}=\frac{y}{r(z+r)} & \text { and } & A_{y}^{N}=-G_{x}^{N}=-\frac{x}{r(z+r)},(\\
G^{S}=-\ln (r-z) & \Rightarrow & A_{x}^{S}=G_{y}^{S}=\frac{y}{r(z-r)} \quad \text { and } & A_{y}^{S}=-G_{x}^{S}=-\frac{x}{r(z-r)},(\tag{5.6}
\end{array}
$$

so that indeed (for $a=x, y$)

$$
\begin{equation*}
G^{N}-G^{S}=\ln \left(x^{2}+y^{2}\right)=: h_{x} \quad \Rightarrow \quad A_{a}^{N}-A_{a}^{S}=-2 \partial_{a} \arctan \frac{y}{x}=: \partial_{a} h_{y} \tag{5.7}
\end{equation*}
$$

and the holomorphic combination

$$
\begin{equation*}
E=\ln \left(x^{2}+y^{2}\right)+2 \mathrm{i} \arctan \frac{y}{x}=\ln w^{2} \tag{5.8}
\end{equation*}
$$

gives rise to the correct 'pre-gauge' function

$$
\begin{equation*}
H=2 w(\ln w-1) \quad \Rightarrow \quad h=x \ln \left(x^{2}+y^{2}\right)-2 x-2 y \arctan \frac{y}{x} \tag{5.9}
\end{equation*}
$$

in the class described above and regular away from the poles. The singularity of the northern functions along the negative z-axis and likewise for the southern patch signify the would-be Dirac string in a global configuration.

6 The dual $(5,8,3)$ supermultiplet

Applying the duality reflection to the $(3,8,5)$ multiplet, we obtain a $(5,8,3)$ multiplet. However, we must first put the inhomogeneous deformation parameter c to zero, since such a deformation does not exist for $d=5$. Section 2 tells us that $\lambda_{x}=+1$ and $\Phi=r^{-3}$, and we again realize an $D(2,2) \simeq \operatorname{osp}(4 \mid 4)$ superalgebra. Naming the components as follows,

$$
\begin{cases}\text { bosons } \tilde{x}_{\alpha}: & v_{1}, v_{2}, w, w_{1}, w_{2} \tag{6.1}\\ \text { fermions } \tilde{\psi}_{i}: & \chi_{0}, \chi_{1}, \chi_{2}, \chi_{3}, \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} \\ \text { auxiliaries } \tilde{f}_{a}: & h_{1}, h_{2}, h_{3}\end{cases}
$$

the array (4.2) gets transformed into the $\mathcal{N}=8$ transformations for the $(5,8,3)$ multiplet:

	Q_{8}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}
v_{1}	λ_{2}	$-\lambda_{3}$	$-\lambda_{0}$	λ_{1}	χ_{2}	χ_{3}	$-\chi_{0}$	$-\chi_{1}$
v_{2}	λ_{3}	λ_{2}	$-\lambda_{1}$	$-\lambda_{0}$	χ_{3}	$-\chi_{2}$	χ_{1}	$-\chi_{0}$
w	χ_{1}	χ_{0}	$-\chi_{3}$	χ_{2}	$-\lambda_{1}$	$-\lambda_{0}$	$-\lambda_{3}$	λ_{2}
w_{1}	χ_{2}	χ_{3}	χ_{0}	$-\chi_{1}$	$-\lambda_{2}$	λ_{3}	$-\lambda_{0}$	$-\lambda_{1}$
w_{2}	χ_{3}	$-\chi_{2}$	χ_{1}	χ_{0}	$-\lambda_{3}$	$-\lambda_{2}$	λ_{1}	$-\lambda_{0}$
χ_{0}	h_{3}	\dot{w}	\dot{w}_{1}	\dot{w}_{2}	h_{1}	$-h_{2}$	$-\dot{v}_{1}$	$-\dot{v}_{2}$
χ_{1}	\dot{w}	$-h_{3}$	\dot{w}_{2}	$-\dot{w}_{1}$	h_{2}	h_{1}	\dot{v}_{2}	$-\dot{v}_{1}$
χ_{2}	\dot{w}_{1}	$-\dot{w}_{2}$	$-h_{3}$	\dot{w}	\dot{v}_{1}	$-\dot{v}_{2}$	h_{1}	h_{2}
χ_{3}	\dot{w}_{2}	\dot{w}_{1}	$-\dot{w}$	$-h_{3}$	\dot{v}_{2}	\dot{v}_{1}	$-h_{2}$	h_{1}
λ_{0}	h_{1}	$-h_{2}$	$-\dot{v}_{1}$	$-\dot{v}_{2}$	$-h_{3}$	$-\dot{w}$	$-\dot{w}_{1}$	$-\dot{w}_{2}$
λ_{1}	h_{2}	h_{1}	$-\dot{v}_{2}$	\dot{v}_{1}	$-\dot{w}$	h_{3}	\dot{w}_{2}	$-\dot{w}_{1}$
λ_{2}	\dot{v}_{1}	\dot{v}_{2}	h_{1}	$-h_{2}$	$-\dot{w}_{1}$	$-\dot{w}_{2}$	h_{3}	\dot{w}
λ_{3}	\dot{v}_{2}	$-\dot{v}_{1}$	h_{2}	h_{1}	$-\dot{w}_{2}$	\dot{w}_{1}	$-\dot{w}$	h_{3}
h_{1}	$\dot{\lambda}_{0}$	$\dot{\lambda}_{1}$	$\dot{\lambda}_{2}$	$\dot{\lambda}_{3}$	$\dot{\chi}_{0}$	$\dot{\chi}_{1}$	$\dot{\chi}_{2}$	$\dot{\chi}_{3}$
h_{2}	$\dot{\lambda}_{1}$	$-\dot{\lambda}_{0}$	$\dot{\lambda}_{3}$	$-\dot{\lambda}_{2}$	$\dot{\chi}_{1}$	$-\dot{\chi}_{0}$	$-\dot{\chi}_{3}$	$\dot{\chi}_{2}$
h_{3}	$\dot{\chi}_{0}$	$-\dot{\chi}_{1}$	$-\dot{\chi}_{2}$	$-\dot{\chi}_{3}$	$-\dot{\lambda}_{0}$	$\dot{\lambda}_{1}$	$\dot{\lambda}_{2}$	$\dot{\lambda}_{3}$

The full Lagrangian \mathcal{L}_{5} is found in Appendix B. Its bosonic part is obvious,

$$
\begin{equation*}
\mathcal{L}_{5} \mid=\widetilde{\Phi}\left(\dot{v}_{\alpha}^{2}+\dot{w}^{2}+\dot{w}_{\alpha}^{2}+h_{a}^{2}\right) \tag{6.3}
\end{equation*}
$$

where the prepotential function is

$$
\begin{equation*}
\widetilde{\Phi}=F_{v_{1} v_{1}}+F_{v_{2} v_{2}}=-\left(F_{w w}+F_{w_{1} w_{1}}+F_{w_{2} w_{2}}\right) \tag{6.4}
\end{equation*}
$$

7 Coupling $(3,8,5)$ to $(5,8,3)$

Since both $(3,8,5)$ and $(5,8,3)$ multiplets represent the same $D(2,2)$ superalgebra, it is natural to couple them. The duality provides a canonical interaction term $\mathcal{L}_{3,5}^{(0)}$ in the joint Lagrangian

$$
\begin{equation*}
\mathcal{L}_{3}^{(0)}+\mathcal{L}_{5}+\gamma \mathcal{L}_{3,5}^{(0)} \tag{7.1}
\end{equation*}
$$

of the form
$\mathcal{L}_{3,5}^{(0)}=x_{a} h_{a}-f_{\alpha} v_{\alpha}-g w-g_{\alpha} w_{\alpha}+\psi_{i} \lambda_{i}+\xi_{i} \chi_{i} \quad$ with $\quad a=1,2,3, \quad \alpha=1,2, \quad i=0,1,2,3$,
with some dimensionless coupling constant γ. It is easy to check that $\mathcal{L}_{3,5}^{(0)}$ is invariant (up to total time derivatives) under all eight supersymmetries and their conformal partners, because the dimensions of any two duality partners add up to one.

The superscript (0) reminds us that we turned off the inhomogeneous deformation in the $(3,8,5)$ multiplet. So the question arises as to whether it is possible to extend this coupling to
the deformed multiplet as well, and what this entails for the dual ($5,8,3$) multiplet. To answer this, we first observe that

$$
\begin{equation*}
\mathcal{L}_{3}+\mathcal{L}_{5}+\gamma \mathcal{L}_{3,5}^{(0)} \tag{7.3}
\end{equation*}
$$

is indeed invariant (up to total time derivatives) under Q_{8}, Q_{1}, Q_{4} and Q_{5}, but

$$
\begin{equation*}
Q_{2} \mathcal{L}_{3,5}^{(0)}=-c \chi_{3}, \quad Q_{3} \mathcal{L}_{3,5}^{(0)}=c \chi_{2}, \quad Q_{6} \mathcal{L}_{3,5}^{(0)}=-c \lambda_{3}, \quad Q_{7} \mathcal{L}_{3,5}^{(0)}=c \lambda_{2} \tag{7.4}
\end{equation*}
$$

do not vanish. Yet, since c is a constant, these terms are linear and may be cancelled by adding other linear terms to the interaction. To achieve this feat, however, one must view the deformation parameter c as the highest component of an $\mathcal{N}=4$ multiplet of type ($3,4,1$) involving the supercharges Q_{j} for $j=2,3,6,7$. Denoting the components of dimension $-1,-\frac{1}{2}$ and 0 by e_{a}, ω_{i} and c, respectively, the transformation table takes the form

	Q_{8}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}
e_{1}	0	0	ω_{2}	ω_{3}	0	0	ω_{0}	ω_{1}
e_{2}	0	0	ω_{3}	$-\omega_{2}$	0	0	$-\omega_{1}$	ω_{0}
e_{3}	0	0	$-\omega_{0}$	$-\omega_{1}$	0	0	ω_{2}	ω_{3}
ω_{0}	0	0	0	$-c$	0	0	0	0
ω_{1}	0	0	c	0	0	0	0	0
ω_{2}	0	0	0	0	0	0	0	$-c$
ω_{3}	0	0	0	0	0	0	c	0
c	0	0	0	0	0	0	0	0

It is important to realize that all these components are constants, i.e. time independent, otherwise there could not be zeros in this table. For the same reason, it is admissible to have this multiplet annihilated by the other four supercharges, Q_{k} for $k=8,1,4,5$. If we add to our interaction Lagrangian two extra pieces,

$$
\begin{equation*}
\mathcal{L}_{3,5}^{(1)}=\omega_{0} \chi_{2}+\omega_{1} \chi_{3}+\omega_{2} \lambda_{2}+\omega_{3} \lambda_{3} \quad \text { and } \quad \mathcal{L}_{3,5}^{(2)}=e_{1} h_{1}+e_{2} h_{2}+e_{3} h_{3}, \tag{7.6}
\end{equation*}
$$

it is not hard to check that all unwanted terms get cancelled, and only total time derivatives remain. In other words,

$$
\begin{equation*}
\mathcal{L}_{3+5}:=\mathcal{L}_{3}+\mathcal{L}_{5}+\gamma \mathcal{L}_{3,5} \tag{7.7}
\end{equation*}
$$

is fully $\mathcal{N}=8$ superconformally invariant for

$$
\begin{align*}
\mathcal{L}_{3,5} & =\left(x_{a}+e_{a}\right) h_{a}-f_{\alpha} v_{\alpha}-g w-g_{\alpha} w_{\alpha} \tag{7.8}\\
& +\xi_{0} \chi_{0}+\xi_{1} \chi_{1}+\left(\xi_{2}+\omega_{0}\right) \chi_{2}+\left(\xi_{3}+\omega_{1}\right) \chi_{3}+\psi_{0} \lambda_{0}+\psi_{1} \lambda_{1}+\left(\psi_{2}+\omega_{2}\right) \lambda_{2}+\left(\psi_{3}+\omega_{3}\right) \lambda_{3},
\end{align*}
$$

which adds to the pairings (7.2) a term linear in a $(1,4,3)$ submultiplet $\left(w ; \chi_{2}, \chi_{3}, \lambda_{2}, \lambda_{3} ; h_{a}\right)$ inside our dual $(5,8,3)$ multiplet. Another interpretation is that the $(1,8,5)$ components with inhomogeneous transformation receive constant shifts which cancel the inhomogeneity produced in the canonical coupling term.

Interestingly, there is another way to cancel the non-invariant terms (7.4). Observing that

$$
\begin{equation*}
Q_{j} \mathcal{L}_{3,5}^{(0)}=c Q_{j} w \quad \text { for } \quad j=2,3,6,7 \tag{7.9}
\end{equation*}
$$

suggests repairing the deficit by adding

$$
\begin{equation*}
\mathcal{L}_{3,5}^{\left(0^{\prime}\right)}=-c w \tag{7.10}
\end{equation*}
$$

to the interaction. While $Q_{j} \mathcal{L}_{3,5}^{\left(0^{\prime}\right)}$ indeed just cancels the unwanted terms, now the other four supersymmetries are compromised, however, as

$$
\begin{equation*}
Q_{8} \mathcal{L}_{3,5}^{\left(0^{\prime}\right)}=-c \chi_{1}, \quad Q_{1} \mathcal{L}_{3,5}^{\left(0^{\prime}\right)}=-c \chi_{0}, \quad Q_{4} \mathcal{L}_{3,5}^{\left(0^{\prime}\right)}=c \lambda_{1}, \quad Q_{5} \mathcal{L}_{3,5}^{\left(0^{\prime}\right)}=c \lambda_{0} \tag{7.11}
\end{equation*}
$$

Comparing with (7.4), we see that the deficiency has simply been shifted from the Q_{j} to the Q_{k} with $k=8,1,4,5$, and the relevant fermionic components carry indices 0 and 1 instead of 2 and 3 . Hence, adding a suitable constant $(3,4,1)$ multiplet for those supersymmetries and the appropriate terms $\mathcal{L}_{3,5}^{\left(1^{\prime}\right)}$ and $\mathcal{L}_{3,5}^{\left(2^{\prime}\right)}$ to the interaction will accomplish the job just as well. The only difference for the bosonic Lagrangians is an additional term of $-\gamma c w$.

Sticking with the first resolution and adding Fayet-Iliopoulos terms for all auxiliary components, the bosonic part of the total action reads

$$
\begin{align*}
\mathcal{L}_{3+5}^{\prime} \mid & =\Phi\left(\dot{x}_{a}^{2}+f_{\alpha}^{2}+g^{2}+g_{\alpha}^{2}\right)+c \vec{A} \cdot \dot{\vec{x}}+\widetilde{\Phi}\left(\dot{v}_{\alpha}^{2}+\dot{w}^{2}+\dot{w}_{\alpha}^{2}+h_{a}^{2}\right) \\
& -\left(\gamma v_{\alpha}-\mu_{\alpha}\right) f_{\alpha}-(\gamma w-\zeta-c \Phi) g-\left(\gamma w_{\alpha}-\zeta_{\alpha}\right) g_{\alpha}+\left(\gamma\left(x_{a}+e_{a}\right)-\widetilde{\mu}_{a}\right) h_{a}, \tag{7.12}
\end{align*}
$$

and elimination of the auxiliary components produces

$$
\begin{align*}
\mathcal{L}_{3+5}^{\prime \prime} \mid & =\Phi \dot{x}_{a}^{2}+c \vec{A} \cdot \dot{\vec{x}}+\widetilde{\Phi}\left(\dot{v}_{\alpha}^{2}+\dot{w}^{2}+\dot{w}_{\alpha}^{2}\right) \\
& -\frac{1}{4} \Phi^{-1}\left(\left(\gamma v_{\alpha}-\mu_{\alpha}\right)^{2}+(\gamma w-\zeta-c \Phi)^{2}+\left(\gamma w_{\alpha}-\zeta_{\alpha}\right)^{2}\right)-\frac{1}{4} \widetilde{\Phi}^{-1}\left(\gamma\left(x_{a}+e_{a}\right)-\widetilde{\mu}_{a}\right)^{2} . \tag{7.13}
\end{align*}
$$

The constant Lagrange multipliers e_{a} serve to eliminate the zero modes of the h_{a}. For convenience, we relabel $w_{\alpha}=v_{2+\alpha}$ and $w=v_{5}$ and define $v^{2}=v_{\alpha} v_{\alpha}+w^{2}+w_{\alpha} w_{\alpha}$. In conical radial coordinates $\rho=2 r^{1 / 2}$ and $\sigma=2 v^{-1 / 2}$, the bosonic action then takes the form

$$
\begin{align*}
\mathcal{L}_{3+5}^{\text {cone }} \mid & =\dot{\rho}^{2}+4 \ell^{2} \rho^{-2}+\dot{\sigma}^{2}+4 \widetilde{\ell}^{2} \sigma^{-2}+c \vec{A} \cdot \dot{\vec{x}} \\
& -\frac{1}{16} \rho^{2}\left(4 \gamma \sigma^{-2} \vec{e}_{\sigma}-\vec{\mu}-4 c \rho^{-2} \vec{e}_{5}\right)^{2}-\sigma^{-6}\left(\gamma\left(\rho^{2} \vec{e}_{\rho}+4 \vec{e}\right)-4 \vec{\mu}\right)^{2} \tag{7.14}
\end{align*}
$$

where we introduced the angular momenta ℓ and $\tilde{\ell}$ in the three- and five-dimensional targets, and the vectors in the first and second brackets are five- and three-dimensional, respectively.

8 A deformed $(5,8,3)$ supermultiplet

If in (7.7) we set to zero the complete ($5,8,3$) multiplet, we simply come back to the original deformed $(3,8,5)$ theory. Let us then try the opposite and see whether we recover the $(5,8,3)$ model. However, due to (7.4) it is not consistent to put the $(3,8,5)$ components to zero completely, but we must keep the zero modes of $x_{a}, \psi_{2}, \psi_{3}, \xi_{2}, \xi_{3}$ and g, which we denote by an overbar. With this provision, the full Lagrangian (7.7) reduces to

$$
\begin{align*}
\widehat{\mathcal{L}}_{5} & =\mathcal{L}_{5}+\gamma\left(\left(\bar{x}_{a}+e_{a}\right) h_{a}+\left(\bar{\xi}_{2}+\omega_{0}\right) \chi_{2}+\left(\bar{\xi}_{3}+\omega_{1}\right) \chi_{3}+\left(\bar{\psi}_{2}+\omega_{2}\right) \lambda_{2}+\left(\bar{\psi}_{3}+\omega_{3}\right) \lambda_{3}-(\bar{g}+c) w\right) \\
& =: \mathcal{L}_{5}+\gamma\left(e_{a}^{\prime} h_{a}+\omega_{0}^{\prime} \chi_{2}+\omega_{1}^{\prime} \chi_{3}+\omega_{2}^{\prime} \lambda_{2}+\omega_{3}^{\prime} \lambda_{3}-c^{\prime} w\right), \tag{8.1}
\end{align*}
$$

and to the transformations (7.5) of the constants we must add

	Q_{8}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}
\bar{x}_{1}	0	0	$\bar{\psi}_{2}$	$\bar{\psi}_{3}$	0	0	$\bar{\xi}_{2}$	$\bar{\xi}_{3}$
\bar{x}_{2}	0	0	$\bar{\psi}_{3}$	$-\bar{\psi}_{2}$	0	0	$-\bar{\xi}_{3}$	$\bar{\xi}_{2}$
\bar{x}_{3}	0	0	$-\bar{\xi}_{2}$	$-\bar{\xi}_{3}$	0	0	$\bar{\psi}_{2}$	$\bar{\psi}_{3}$
$\bar{\xi}_{2}$	0	0	0	$\bar{g}+c$	0	0	0	0
$\bar{\xi}_{3}$	0	0	$-\bar{g}-c$	0	0	0	0	0
$\bar{\psi}_{2}$	0	0	0	0	0	0	0	$\bar{g}+c$
$\bar{\psi}_{3}$	0	0	0	0	0	0	$-\bar{g}-c$	0
\bar{g}	0	0	0	0	0	0	0	0

which is what remains of (4.2). We see that only the four Q_{j} are effective. The upshot is a deformation of the original ($5,8,3$) Lagrangian by linear terms in a ($1,4,3$) submultiplet. The linear coefficients $\left(e_{a}^{\prime}, \omega_{i}^{\prime}, c^{\prime}\right)$ are just the sum of the (3,4,1) zero-mode submultiplet (8.2) of the original $(3,8,5)$ multiplet and the constant auxiliary $(3,4,1)$ multiplet (7.5). This combination transforms as follows,

	Q_{8}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}	Q_{6}	Q_{7}
e_{1}^{\prime}	0	0	ω_{2}^{\prime}	ω_{3}^{\prime}	0	0	ω_{0}^{\prime}	ω_{1}^{\prime}
e_{2}^{\prime}	0	0	ω_{3}^{\prime}	$-\omega_{2}^{\prime}$	0	0	$-\omega_{1}^{\prime}$	ω_{0}^{\prime}
e_{3}^{\prime}	0	0	$-\omega_{0}^{\prime}$	$-\omega_{1}^{\prime}$	0	0	ω_{2}^{\prime}	ω_{3}^{\prime}
ω_{0}^{\prime}	0	0	0	$-c^{\prime}$	0	0	0	0
ω_{1}^{\prime}	0	0	c^{\prime}	0	0	0	0	0
ω_{2}^{\prime}	0	0	0	0	0	0	0	$-c^{\prime}$
ω_{3}^{\prime}	0	0	0	0	0	0	c^{\prime}	0
c^{\prime}	0	0	0	0	0	0	0	0

Hence, the coupling of the ($5,8,3$) multiplet to a dual inhomogeneous $(3,8,5)$ multiplet leads to a deformation of the former, which consists of the coupling of a ($1,4,3$) submultiplet to an auxiliary constant ($3,4,1$) dual multiplet. The deformation is parametrized by γ and contains the $(3,8,5)$ inhomogeneity c as part of it. Of course, we may also add standard Fayet-Iliopoulos terms.

A Appendix: Action for the $(3,8,5)$ supermultiplet

The complete Lagrangian for the $(3,8,5)$ multiplet reads

$$
\begin{aligned}
& \mathcal{L}_{3}^{(0)}=\Phi\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}+f_{1}^{2}+f_{2}^{2}+g^{2}+g_{1}^{2}+g_{2}^{2}\right)+ \\
& \Phi\left(\dot{\psi}_{0} \psi_{0}+\dot{\psi}_{1} \psi_{1}+\dot{\psi}_{2} \psi_{2}+\dot{\psi}_{3} \psi_{3}+\dot{\xi}_{0} \xi_{0}+\dot{\xi}_{1} \xi_{1}+\dot{\xi}_{2} \xi_{2}+\dot{\xi}_{3} \xi_{3}\right)+ \\
& \Phi_{x}\left(\left(\dot{y} \xi_{0} \xi_{1}+f_{1} \xi_{0} \xi_{2}+f_{2} \xi_{0} \xi_{3}\right)+\left(\dot{y} \psi_{0} \psi_{1}+f_{1} \psi_{0} \psi_{2}+f_{2} \psi_{0} \psi_{3}\right)\right. \\
& +\left(g \psi_{0} \xi_{1}+g_{1} \psi_{0} \xi_{2}+g_{2} \psi_{0} \xi_{3}\right)+\left(g \psi_{1} \xi_{0}+g_{1} \psi_{2} \xi_{0}+g_{2} \psi_{3} \xi_{0}\right) \\
& -\left(\dot{y} \xi_{2} \xi_{3}+f_{1} \xi_{3} \xi_{1}+f_{2} \xi_{1} \xi_{2}\right)+\left(\dot{y} \psi_{2} \psi_{3}+f_{1} \psi_{3} \psi_{1}+f_{2} \psi_{1} \psi_{2}\right) \\
& +\left(g \xi_{3} \psi_{2}+g_{1} \xi_{1} \psi_{3}+g_{2} \xi_{2} \psi_{1}\right)-\left(g \xi_{2} \psi_{3}+g_{1} \xi_{3} \psi_{1}+g_{2} \xi_{1} \psi_{2}\right) \\
& \left.+\dot{z}\left(\psi_{0} \xi_{0}+\xi_{1} \psi_{1}+\xi_{2} \psi_{2}+\xi_{3} \psi_{3}\right)\right)+ \\
& \Phi_{y}\left(\left(-\dot{x} \xi_{0} \xi_{1}-f_{1} \xi_{0} \xi_{3}+f_{2} \xi_{0} \xi_{2}\right)+\left(\dot{x} \psi_{1} \psi_{0}-f_{1} \psi_{3} \psi_{0}+f_{2} \psi_{2} \psi_{0}\right)\right. \\
& -\left(\dot{z} \xi_{1} \psi_{0}-g_{1} \xi_{3} \psi_{0}+g_{2} \xi_{2} \psi_{0}\right)-\left(\dot{z} \xi_{0} \psi_{1}+g_{1} \xi_{0} \psi_{3}-g_{2} \xi_{0} \psi_{2}\right) \\
& +g\left(\xi_{0} \psi_{0}-\xi_{1} \psi_{1}+\xi_{2} \psi_{2}+\xi_{3} \psi_{3}\right) \\
& +\dot{x}\left(\xi_{2} \xi_{3}-\psi_{2} \psi_{3}\right)-\dot{z}\left(\xi_{3} \psi_{2}-\xi_{2} \psi_{3}\right) \\
& \left.+g_{1}\left(\psi_{1} \xi_{2}-\xi_{1} \psi_{2}\right)+g_{2}\left(\psi_{1} \xi_{3}-\xi_{1} \psi_{3}\right)\right)+ \\
& \Phi_{z}\left(\left(g \xi_{0} \xi_{1}+g_{1} \xi_{0} \xi_{2}+g_{2} \xi_{0} \xi_{3}\right)+\left(g \psi_{0} \psi_{1}+g_{1} \psi_{0} \psi_{2}+g_{2} \psi_{0} \psi_{3}\right)\right. \\
& -\left(\dot{y} \psi_{0} \xi_{1}+f_{1} \psi_{0} \xi_{2}+f_{2} \psi_{0} \xi_{3}\right)-\left(\dot{y} \psi_{1} \xi_{0}+f_{1} \psi_{2} \xi_{0}+f_{2} \psi_{3} \xi_{0}\right) \\
& +\left(g \xi_{2} \xi_{3}+g_{1} \xi_{3} \xi_{1}+g_{2} \xi_{1} \xi_{2}\right)+\left(g \psi_{2} \psi_{3}+g_{1} \psi_{3} \psi_{1}+g_{2} \psi_{1} \psi_{2}\right) \\
& +\left(\dot{y} \xi_{3} \psi_{2}+f_{1} \xi_{1} \psi_{3}+f_{2} \xi_{2} \psi_{1}\right)-\left(\dot{y} \xi_{2} \psi_{3}+f_{1} \xi_{3} \psi_{1}+f_{2} \xi_{1} \psi_{2}\right) \\
& \left.+\dot{x}\left(\psi_{0} \xi_{0}+\xi_{1} \psi_{1}+\xi_{2} \psi_{2}+\xi_{3} \psi_{3}\right)\right)+ \\
& \Phi_{x x}\left(\psi_{3} \psi_{1} \xi_{2} \xi_{0}+\psi_{3} \psi_{0} \xi_{2} \xi_{1}-\psi_{2} \psi_{1} \xi_{3} \xi_{0}-\psi_{2} \psi_{0} \xi_{3} \xi_{1}\right)+ \\
& \Phi_{y y}\left(\psi_{2} \psi_{0} \xi_{2} \xi_{0}+\psi_{3} \psi_{0} \xi_{3} \xi_{0}-\psi_{2} \psi_{1} \xi_{2} \xi_{1}-\psi_{3} \psi_{1} \xi_{3} \xi_{1}\right)+ \\
& \Phi_{z z}\left(-\xi_{3} \xi_{2} \xi_{1} \xi_{0}+\psi_{3} \psi_{2} \xi_{1} \xi_{0}-\psi_{1} \psi_{0} \xi_{3} \xi_{2}+\psi_{3} \psi_{2} \psi_{1} \psi_{0}\right)+ \\
& \Phi_{x y}\left(\psi_{2} \psi_{0} \xi_{3} \xi_{0}-\psi_{2} \psi_{0} \xi_{2} \xi_{1}+\psi_{3} \psi_{1} \xi_{2} \xi_{1}-\psi_{3} \psi_{0} \xi_{2} \xi_{0}\right. \\
& \left.-\psi_{2} \psi_{1} \xi_{3} \xi_{1}-\psi_{3} \psi_{0} \xi_{3} \xi_{1}-\psi_{2} \psi_{1} \xi_{2} \xi_{0}-\psi_{3} \psi_{1} \xi_{3} \xi_{0}\right)- \\
& \Phi_{x z}\left(\psi_{2} \xi_{3} \xi_{1} \xi_{0}+\psi_{2} \psi_{1} \psi_{0} \xi_{3}-\psi_{3} \psi_{1} \psi_{0} \xi_{2}+\psi_{3} \psi_{2} \psi_{1} \xi_{0}\right. \\
& \left.+\psi_{3} \xi_{2} \xi_{1} \xi_{0}-\psi_{0} \xi_{3} \xi_{2} \xi_{1}+\psi_{3} \psi_{2} \psi_{0} \xi_{1}-\psi_{1} \xi_{3} \xi_{2} \xi_{0}\right)- \\
& \Phi_{y z}\left(\psi_{0} \xi_{3} \xi_{2} \xi_{0}+\psi_{2} \xi_{2} \xi_{1} \xi_{0}+\psi_{3} \xi_{3} \xi_{1} \xi_{0}-\psi_{1} \xi_{3} \xi_{2} \xi_{1}\right. \\
& \left.-\psi_{3} \psi_{2} \psi_{0} \xi_{0}+\psi_{3} \psi_{1} \psi_{0} \xi_{3}+\psi_{2} \psi_{1} \psi_{0} \xi_{2}+\psi_{3} \psi_{2} \psi_{1} \xi_{1}\right)
\end{aligned}
$$

and

$$
\begin{align*}
\mathcal{L}_{3}^{(1)}= & \Phi g+A_{x} \dot{x}+A_{y} \dot{y}+ \tag{A.2}\\
& \Phi_{x}\left(\psi_{0} \xi_{1}+\psi_{1} \xi_{0}\right)+\Phi_{y}\left(\psi_{1} \xi_{1}-\psi_{0} \xi_{0}\right)-\Phi_{z}\left(\psi_{1} \psi_{0}+\xi_{1} \xi_{0}\right) .
\end{align*}
$$

B Appendix: Action for the $(5,8,3)$ supermultiplet

The complete Lagrangian for the $(5,8,3)$ multiplet reads

$$
\begin{align*}
& \mathcal{L}_{5}=\widetilde{\Phi}\left(\dot{v}_{1}^{2}+\dot{v}_{2}^{2}+\dot{w}^{2}+\dot{w}_{1}^{2}+\dot{w}_{2}^{2}+h_{1}^{2}+h_{2}^{2}+h_{3}^{2}\right)+ \\
& \widetilde{\Phi}\left(\dot{\lambda}_{0} \lambda_{0}+\dot{\lambda}_{1} \lambda_{1}+\dot{\lambda}_{2} \lambda_{2}+\dot{\lambda}_{3} \lambda_{3}+\dot{\chi}_{0} \chi_{0}+\dot{\chi}_{1} \chi_{1}+\dot{\chi}_{2} \chi_{2}+\dot{\chi}_{3} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{1}}\left[\dot{v}_{2}\left(\lambda_{0} \lambda_{1}+\lambda_{2} \lambda_{3}+\chi_{1} \chi_{0}+\chi_{2} \chi_{3}\right)+h_{1}\left(\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{0}+\chi_{3} \chi_{1}+\chi_{2} \chi_{0}\right)\right. \\
& \left.+h_{2}\left(\lambda_{2} \lambda_{1}+\lambda_{3} \lambda_{0}+\chi_{0} \chi_{3}+\chi_{2} \chi_{1}\right)+h_{3}\left(\lambda_{0} \chi_{2}+\lambda_{3} \chi_{1}+\lambda_{2} \chi_{0}+\chi_{3} \lambda_{1}\right)\right]+ \\
& \widetilde{\Phi}_{v_{2}}\left[\dot{v}_{1}\left(\lambda_{1} \lambda_{0}+\lambda_{3} \lambda_{2}+\chi_{0} \chi_{1}+\chi_{3} \chi_{2}\right)+h_{1}\left(\lambda_{2} \lambda_{1}+\lambda_{3} \lambda_{0}+\chi_{1} \chi_{2}+\chi_{3} \chi_{0}\right)\right. \\
& \left.+h_{2}\left(\lambda_{0} \lambda_{2}+\lambda_{3} \lambda_{1}+\chi_{3} \chi_{1}+\chi_{2} \chi_{0}\right)+h_{3}\left(\chi_{1} \lambda_{2}+\lambda_{3} \chi_{0}+\lambda_{1} \chi_{2}+\lambda_{0} \chi_{3}\right)\right]+ \\
& \widetilde{\Phi}_{w}\left[\dot{w}_{1}\left(\lambda_{3} \lambda_{0}+\lambda_{1} \lambda_{2}+\chi_{0} \chi_{3}+\chi_{1} \chi_{2}\right)+\dot{w}_{2}\left(\lambda_{0} \lambda_{2}+\lambda_{3} \lambda_{1}+\chi_{2} \chi_{0}+\chi_{1} \chi_{3}\right)\right. \\
& +h_{1}\left(\chi_{2} \lambda_{3}+\chi_{1} \lambda_{0}+\chi_{0} \lambda_{1}+\lambda_{2} \chi_{3}\right)+h_{2}\left(\chi_{1} \lambda_{1}+\lambda_{2} \chi_{2}+\lambda_{0} \chi_{0}+\lambda_{3} \chi_{3}\right) \\
& \left.+h_{3}\left(\lambda_{1} \lambda_{0}+\lambda_{2} \lambda_{3}+\chi_{1} \chi_{0}+\chi_{3} \chi_{2}\right)\right]+ \\
& \widetilde{\Phi}_{w_{1}}\left[\dot{w}\left(\lambda_{0} \lambda_{3}+\lambda_{2} \lambda_{1}+\chi_{2} \chi_{1}+\chi_{3} \chi_{0}\right)+\dot{w}_{2}\left(\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{0}+\chi_{0} \chi_{1}+\chi_{2} \chi_{3}\right)\right. \\
& +h_{1}\left(\lambda_{3} \chi_{1}+\chi_{3} \lambda_{1}+\chi_{2} \lambda_{0}+\chi_{0} \lambda_{2}\right)+h_{2}\left(\chi_{1} \lambda_{2}+\chi_{2} \lambda_{1}+\lambda_{0} \chi_{3}+\chi_{0} \lambda_{3}\right) \\
& \left.+h_{3}\left(\lambda_{2} \lambda_{0}+\lambda_{3} \lambda_{1}+\chi_{1} \chi_{3}+\chi_{2} \chi_{0}\right)\right]+ \\
& \widetilde{\Phi}_{w_{2}}\left[\dot{w}\left(\lambda_{3} \lambda_{1}+\lambda_{2} \lambda_{0}+\chi_{0} \chi_{2}+\chi_{3} \chi_{1}\right)+\dot{w}_{1}\left(\lambda_{0} \lambda_{1}+\lambda_{3} \lambda_{2}+\chi_{1} \chi_{0}+\chi_{3} \chi_{2}\right)\right. \\
& +h_{1}\left(\chi_{0} \lambda_{3}+\lambda_{1} \chi_{2}+\chi_{3} \lambda_{0}+\chi_{1} \lambda_{2}\right)+h_{2}\left(\chi_{3} \lambda_{1}+\lambda_{2} \chi_{0}+\chi_{2} \lambda_{0}+\chi_{1} \lambda_{3}\right) \\
& \left.+h_{3}\left(\lambda_{3} \lambda_{0}+\lambda_{1} \lambda_{2}+\chi_{3} \chi_{0}+\chi_{2} \chi_{1}\right)\right]+ \\
& \widetilde{\Phi}_{w w}\left(\lambda_{0} \chi_{0} \lambda_{1} \chi_{1}+\lambda_{2} \chi_{2} \lambda_{3} \chi_{3}+\chi_{0} \chi_{1} \chi_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{1} v_{1}}\left(\lambda_{0} \chi_{0} \chi_{2} \lambda_{2}+\lambda_{1} \chi_{1} \lambda_{3} \chi_{3}+\lambda_{0} \chi_{1} \chi_{2} \lambda_{3}-\chi_{0} \lambda_{1} \lambda_{2} \chi_{3}+\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}\right)+ \\
& \widetilde{\Phi}_{v_{2} v_{2}}\left(\lambda_{0} \chi_{0} \chi_{3} \lambda_{3}+\lambda_{1} \chi_{1} \lambda_{2} \chi_{2}+\lambda_{0} \chi_{1} \lambda_{2} \chi_{3}-\chi_{0} \lambda_{1} \chi_{2} \lambda_{3}+\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}\right)+ \\
& \widetilde{\Phi}_{w_{1} w_{1}}\left(\lambda_{0} \chi_{0} \chi_{2} \lambda_{2}+\lambda_{1} \chi_{1} \lambda_{3} \chi_{3}-\lambda_{0} \lambda_{1} \chi_{2} \chi_{3}+\lambda_{0} \chi_{1} \lambda_{2} \chi_{3}+\chi_{0} \chi_{1} \lambda_{2} \lambda_{3}+\right. \\
& \left.-\chi_{0} \lambda_{1} \chi_{2} \lambda_{3}+\chi_{0} \chi_{1} \chi_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{w_{2} w_{2}}\left(\lambda_{0} \chi_{0} \chi_{3} \lambda_{3}+\lambda_{1} \chi_{1} \lambda_{2} \chi_{2}-\lambda_{0} \lambda_{1} \chi_{2} \chi_{3}+\lambda_{0} \chi_{1} \chi_{2} \lambda_{3}+\chi_{0} \chi_{1} \lambda_{2} \lambda_{3}+\right. \\
& \left.-\chi_{0} \lambda_{1} \lambda_{2} \chi_{3}+\chi_{0} \chi_{1} \chi_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{1} v_{2}}\left(\lambda_{0} \chi_{0} \chi_{2} \lambda_{3}-\lambda_{0} \chi_{0} \lambda_{2} \chi_{3}-\lambda_{0} \chi_{1} \chi_{2} \lambda_{2}+\lambda_{0} \chi_{1} \chi_{3} \lambda_{3}+\chi_{0} \lambda_{1} \lambda_{2} \chi_{2}\right. \\
& \left.+\chi_{0} \lambda_{1} \chi_{3} \lambda_{3}+\lambda_{1} \chi_{1} \chi_{2} \lambda_{3}-\lambda_{1} \chi_{1} \lambda_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{1} w}\left(-\lambda_{0} \chi_{0} \lambda_{1} \lambda_{2}-\lambda_{0} \chi_{0} \chi_{1} \chi_{2}+\lambda_{0} \lambda_{3} \lambda_{1} \chi_{1}+\lambda_{0} \lambda_{3} \chi_{2} \lambda_{2}+\chi_{0} \chi_{3} \chi_{1} \lambda_{1}\right. \\
& \left.+\chi_{0} \chi_{3} \lambda_{2} \chi_{2}+\lambda_{1} \lambda_{2} \chi_{3} \lambda_{3}+\chi_{1} \chi_{2} \chi_{3} \lambda_{3}\right)+ \\
& \widetilde{\Phi}_{v_{1} w_{1}}\left(\lambda_{0} \lambda_{1} \chi_{2} \lambda_{3}-\lambda_{0} \chi_{1} \lambda_{2} \lambda_{3}-\chi_{0} \lambda_{1} \lambda_{2} \lambda_{3}-\lambda_{0} \lambda_{1} \lambda_{2} \chi_{3}-\chi_{0} \lambda_{1} \chi_{2} \chi_{3}\right. \\
& \left.+\chi_{0} \chi_{1} \lambda_{2} \chi_{3}-\chi_{0} \chi_{1} \chi_{2} \lambda_{3}-\lambda_{0} \chi_{1} \chi_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{1} w_{2}}\left(\lambda_{0} \chi_{0} \chi_{2} \chi_{3}+\lambda_{0} \chi_{0} \lambda_{2} \lambda_{3}+\chi_{0} \chi_{1} \chi_{2} \lambda_{2}+\chi_{0} \chi_{1} \lambda_{3} \chi_{3}+\lambda_{0} \lambda_{1} \lambda_{2} \chi_{2}+\right. \\
& \left.\lambda_{0} \lambda_{1} \chi_{3} \lambda_{3}+\lambda_{1} \chi_{1} \lambda_{2} \lambda_{3}+\lambda_{1} \chi_{1} \chi_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{2} w}\left(\lambda_{0} \chi_{0} \chi_{3} \chi_{1}+\lambda_{0} \chi_{0} \lambda_{3} \lambda_{1}+\chi_{0} \chi_{2} \lambda_{1} \chi_{1}+\chi_{0} \chi_{2} \chi_{3} \lambda_{3}+\lambda_{0} \lambda_{2} \chi_{1} \lambda_{1}\right. \\
& \left.+\lambda_{0} \lambda_{2} \lambda_{3} \chi_{3}+\lambda_{2} \chi_{2} \lambda_{3} \lambda_{1}+\chi_{2} \lambda_{2} \chi_{1} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{v_{2} w_{1}}\left(-\lambda_{0} \chi_{0} \chi_{2} \chi_{3}-\lambda_{0} \chi_{0} \lambda_{2} \lambda_{3}+\chi_{0} \chi_{1} \chi_{2} \lambda_{2}+\chi_{0} \chi_{1} \lambda_{3} \chi_{3}+\lambda_{0} \lambda_{1} \lambda_{2} \chi_{2}\right. \\
& \left.+\lambda_{0} \lambda_{1} \chi_{3} \lambda_{3}+\lambda_{1} \chi_{1} \lambda_{3} \lambda_{2}+\lambda_{1} \chi_{1} \chi_{3} \chi_{2}\right)+ \\
& \widetilde{\Phi}_{v_{2} w_{2}}\left(-\chi_{0} \lambda_{1} \lambda_{2} \lambda_{3}+\lambda_{0} \lambda_{1} \lambda_{2} \chi_{3}-\lambda_{0} \lambda_{1} \chi_{2} \lambda_{3}-\lambda_{0} \chi_{1} \lambda_{2} \lambda_{3}-\chi_{0} \chi_{1} \lambda_{2} \chi_{3}\right. \\
& \left.-\lambda_{0} \chi_{1} \chi_{2} \chi_{3}+\chi_{0} \chi_{1} \chi_{2} \lambda_{3}-\chi_{0} \lambda_{1} \chi_{2} \chi_{3}\right)+ \\
& \widetilde{\Phi}_{w w_{1}}\left(-\lambda_{0} \chi_{0} \lambda_{1} \chi_{2}+\lambda_{0} \chi_{0} \chi_{1} \lambda_{2}-\chi_{0} \lambda_{3} \lambda_{1} \chi_{1}+\chi_{0} \lambda_{3} \lambda_{2} \chi_{2}-\lambda_{0} \chi_{3} \lambda_{1} \chi_{1}\right. \\
& \left.+\lambda_{0} \chi_{3} \lambda_{2} \chi_{2}-\lambda_{3} \chi_{3} \lambda_{1} \chi_{2}+\lambda_{3} \chi_{3} \chi_{1} \lambda_{2}\right)+ \\
& \widetilde{\Phi}_{w w_{2}}\left(\lambda_{0} \chi_{0} \chi_{3} \lambda_{1}-\lambda_{0} \chi_{0} \lambda_{3} \chi_{1}-\chi_{0} \lambda_{2} \chi_{1} \lambda_{1}+\chi_{0} \lambda_{2} \chi_{3} \lambda_{3}+\lambda_{0} \chi_{2} \lambda_{1} \chi_{1}\right. \\
& \left.+\lambda_{0} \chi_{2} \chi_{3} \lambda_{3}+\lambda_{1} \chi_{3} \chi_{2} \lambda_{2}-\chi_{1} \lambda_{3} \chi_{2} \lambda_{2}\right)+ \\
& \widetilde{\Phi}_{w_{1} w_{2}}\left(\lambda_{0} \chi_{0} \chi_{2} \lambda_{3}-\lambda_{0} \chi_{0} \lambda_{2} \chi_{3}+\chi_{0} \lambda_{1} \chi_{2} \lambda_{2}+\chi_{0} \lambda_{1} \lambda_{3} \chi_{3}+\lambda_{0} \chi_{1} \chi_{2} \lambda_{2}\right. \\
& \left.+\lambda_{0} \chi_{1} \lambda_{3} \chi_{3}+\chi_{2} \lambda_{3} \lambda_{1} \chi_{1}+\lambda_{2} \chi_{3} \chi_{1} \lambda_{1}\right) . \tag{B.1}
\end{align*}
$$

C Appendix: $\mathcal{N}=4$ duality

It is instructive to display the simpler case of $\mathcal{N}=4$ duality. Since only the $(1,4,3)$ multiplet allows for an inhomogeneous deformation, we concentrate on the $d=1 / d=3$ duality and the coupling of these two multiplets.

Like in the $\mathcal{N}=8$ cases, the $\mathcal{N}=4$ Lagrangians have the form

$$
\begin{equation*}
\mathcal{L}_{d}=\Phi \delta_{a b} \dot{x}^{a} \dot{x}^{b}+\ldots . \tag{C.1}
\end{equation*}
$$

Scale (D) and special conformal (K) invariance require

$$
\begin{equation*}
\Phi=r^{\beta} Y(\text { angles }) \quad \text { and } \quad \dot{\Phi} r^{2}=\frac{\mathrm{d}}{\mathrm{~d} t} Z \quad \text { for } \quad r^{2}=x^{a} x^{a} \tag{C.2}
\end{equation*}
$$

with some exponent β and functions Y and Z. It follows that $Z=\frac{c}{c+2} r^{\beta+2} Y$ and $Y=$ constant.
Let us denote the components of the two multiplets by

$$
\begin{cases}(1,4,3): & x ; \psi_{0}, \psi_{1}, \psi_{2}, \psi_{3} ; f_{1}, f_{2}, f_{3} \tag{C.3}\\ (3,4,1): & v_{1}, v_{2}, v_{3} ; \lambda_{0}, \lambda_{1}, \lambda_{2}, \lambda_{3} ; h\end{cases}
$$

and assign scaling dimensions $(i=0,1,2,3$ and $a=1,2,3)$

$$
\begin{equation*}
\left[x, \psi_{i}, f_{a}\right]=-1,-\frac{1}{2}, 0 \quad \text { and } \quad\left[v_{a}, \lambda_{i}, h\right]=1, \frac{3}{2}, 2 \tag{C.4}
\end{equation*}
$$

so that the conformal factors for a dimensionless action become

$$
\begin{equation*}
\Phi=x^{-1} \quad \text { and } \quad \widetilde{\Phi}=v^{-3} \quad \text { with } \quad v^{2}=v_{a} v_{a} \tag{C.5}
\end{equation*}
$$

The bosonic target space is therefore the product of a (half) line with a three-dimensional cone. The supersymmetry transformations are given by

	Q_{1}	Q_{2}	Q_{3}	Q_{4}
x	ψ_{1}	ψ_{2}	ψ_{3}	ψ_{0}
ψ_{0}	f_{1}	f_{2}	f_{3}	\dot{x}
ψ_{1}	\dot{x}	$f_{3}+c$	$-f_{2}$	$-f_{1}$
ψ_{2}	$-f_{3}-c$	\dot{x}	f_{1}	$-f_{2}$
ψ_{3}	f_{2}	$-f_{1}$	\dot{x}	$-f_{3}$
f_{1}	$\dot{\psi}_{0}$	$-\dot{\psi}_{3}$	$\dot{\psi}_{2}$	$-\dot{\psi}_{1}$
f_{2}	$\dot{\psi}_{3}$	$\dot{\psi}_{0}$	$-\dot{\psi}_{1}$	$-\dot{\psi}_{2}$
f_{3}	$-\dot{\psi}_{2}$	$\dot{\psi}_{1}$	$\dot{\psi}_{0}$	$-\dot{\psi}_{3}$

	Q_{1}	Q_{2}	Q_{3}	Q_{4}
v_{1}	λ_{0}	$-\lambda_{3}$	λ_{2}	$-\lambda_{1}$
v_{2}	λ_{3}	λ_{0}	$-\lambda_{1}$	$-\lambda_{2}$
v_{3}	$-\lambda_{2}$	λ_{1}	λ_{0}	$-\lambda_{3}$
λ_{0}	\dot{v}_{1}	\dot{v}_{2}	\dot{v}_{3}	h
λ_{1}	h	\dot{v}_{3}	$-\dot{v}_{2}$	$-\dot{v}_{1}$
λ_{2}	$-\dot{v}_{3}$	h	\dot{v}_{1}	$-\dot{v}_{2}$
λ_{3}	\dot{v}_{2}	$-\dot{v}_{1}$	h	$-\dot{v}_{3}$
h	$\dot{\lambda}_{1}$	$\dot{\lambda}_{2}$	$\dot{\lambda}_{3}$	$\dot{\lambda}_{0}$

with inhomogeneous parameter c. The transformations can be written in terms of the quaternionic structure constants $\delta_{a b}$ and $\epsilon_{a b c}$ (with $\epsilon_{123}=1$). We note that the two multiplets must have the same chirality to be coupled. Therefore, the overall sign of ϵ_{123} in the second multiplet is fixed in order to allow the supersymmetric pairing of the multiplets.

The superconformally invariant action of the coupled system is given as a sum of three terms,

$$
\begin{equation*}
\mathcal{L}_{1+3}=\mathcal{L}_{1}+\mathcal{L}_{3}+\gamma \mathcal{L}_{1,3} \tag{C.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{L}_{1}=Q_{4} Q_{3} Q_{2} Q_{1} F(x) \quad \text { and } \quad \mathcal{L}_{3}=Q_{4} Q_{3} Q_{2} Q_{1} \widetilde{F}(\vec{v}) \tag{C.8}
\end{equation*}
$$

The supersymmetric pairing term reads $(a=1,2,3$ and $i=0,1,2,3)$

$$
\begin{align*}
\mathcal{L}_{1,3} & =\mathcal{L}_{1,3}^{(0)}+\mathcal{L}_{1,3}^{(1)}+\mathcal{L}_{1,3}^{(2)} \\
\mathcal{L}_{1,3}^{(0)} & =x h-f_{a} v_{a}+\psi_{i} \lambda_{i} \\
\mathcal{L}_{1,3}^{(1)} & =\omega_{1} \lambda_{1}+\omega_{2} \lambda_{2}, \\
\mathcal{L}_{1,3}^{(2)} & =e h, \tag{C.9}
\end{align*}
$$

where the extra constants ω_{1}, ω_{2} and e have been added, with scaling dimensions $\left[\omega_{1}\right]=\left[\omega_{2}\right]=-\frac{1}{2}$ and $[e]=-1$. The supersymmetry transformations of the constant $(1,2,1)$ multiplet are

	Q_{1}	Q_{2}	Q_{3}	Q_{4}
e	ω_{1}	ω_{2}	0	0
ω_{1}	0	$-c$	0	0
ω_{2}	c	0	0	0
c	0	0	0	0

An alternative coupling possibility is the following,

$$
\begin{align*}
\mathcal{L}_{1,3} & =\mathcal{L}_{1,3}^{(0)}+\mathcal{L}_{1,3}^{\left(0^{\prime}\right)}+\mathcal{L}_{1,3}^{\left(1^{\prime}\right)}+\mathcal{L}_{1,3}^{\left(2^{\prime}\right)} \\
\mathcal{L}_{1,3}^{(0)} & =x h-f_{a} v_{a}+\psi_{i} \lambda_{i} \\
\mathcal{L}_{1,3}^{\left(0^{\prime}\right)} & =-c v_{3} \\
\mathcal{L}_{1,3}^{\left(1^{\prime}\right)} & =\omega_{0} \lambda_{0}+\omega_{3} \lambda_{3} \\
\mathcal{L}_{1,3}^{\left(2^{\prime}\right)} & =e^{\prime} h \tag{C.11}
\end{align*}
$$

where the extra constants ω_{0}, ω_{3} and e^{\prime} have been added, with scaling dimensions $\left[\omega_{0}\right]=\left[\omega_{3}\right]=-\frac{1}{2}$ and $\left[e^{\prime}\right]=-1$. The supersymmetry transformations of this constant $(1,2,1)$ multiplet are

	Q_{1}	Q_{2}	Q_{3}	Q_{4}
e^{\prime}	0	0	ω_{3}	ω_{0}
ω_{0}	0	0	c	0
ω_{3}	0	0	0	$-c$
c	0	0	0	0

The Lagrangians of the one- and three-dimensional systems read

$$
\begin{align*}
\mathcal{L}_{1} & =\Phi\left\{\dot{x}^{2}+f_{a}^{2}+\dot{\psi}_{0} \psi_{0}+\dot{\psi}_{a} \psi_{a}\right\} \\
& +\Phi_{x}\left\{\psi_{0} \psi_{a} f_{a}+\frac{1}{2} \epsilon_{a b c} \psi_{a} \psi_{b} f_{c}\right\}+\Phi_{x x}\left\{\frac{1}{6} \epsilon_{a b c} \psi_{0} \psi_{a} \psi_{b} \psi_{c}\right\} \\
& +c \Phi f_{3}+c \Phi_{x} \psi_{0} \psi_{3} \tag{C.13}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{L}_{3} & =\widetilde{\Phi}\left\{\dot{v}_{a}^{2}+h^{2}+\dot{\lambda}_{0} \lambda_{0}+\dot{\lambda}_{a} \lambda_{a}\right\} \\
& +\widetilde{\Phi}_{a}\left\{\lambda_{a} \lambda_{b} \dot{v}_{b}+\epsilon_{a b c}\left(\frac{1}{2} \lambda_{b} \lambda_{c} h-\lambda_{0} \lambda_{b} \dot{v}_{c}\right)\right\}+\frac{1}{6} \Delta \widetilde{\Phi} \epsilon_{a b c} \lambda_{0} \lambda_{a} \lambda_{b} \lambda_{c}, \tag{C.14}
\end{align*}
$$

where

$$
\begin{equation*}
\Phi=F_{x x} \quad \text { and } \quad \widetilde{\Phi}=\Delta \widetilde{F} \equiv \widetilde{F}_{a a} \tag{C.15}
\end{equation*}
$$

respectively.
Finally we add Fayet-Iliopoulos terms which are superconformal (not just supersymmetric) invariants and introduce dimensionful constants μ_{a} and ν,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{FI}}=\mu_{a} f_{a}-\nu h \tag{C.16}
\end{equation*}
$$

with $\left[\mu_{a}\right]=1$ and $[\nu]=-1$. The supersymmetry transformations act trivially on μ_{a} and ν.
Setting all fermions to zero, the total bosonic Lagrangian based on (C.7) with (C.9) becomes

$$
\begin{equation*}
\mathcal{L}_{1+3}^{\prime} \mid=\Phi\left(\dot{x}^{2}+f_{a}^{2}\right)+\widetilde{\Phi}\left(\dot{v}_{a}^{2}+h^{2}\right)-\left(\gamma v_{a}-\mu_{a}-c \delta_{a 3} \Phi\right) f_{a}+(\gamma x+\gamma e-\nu) h \tag{C.17}
\end{equation*}
$$

If we use (C.11) instead, an additional term $-\gamma c v_{3}$ appears. Eliminating the auxiliary fields via

$$
\begin{equation*}
f_{a}=\frac{1}{2} \Phi^{-1}\left(\gamma v_{a}-\mu_{a}-c \delta_{a 3} \Phi\right) \quad \text { and } \quad h=-\frac{1}{2} \widetilde{\Phi}^{-1}(\gamma x+\gamma e-\nu) \tag{C.18}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
\mathcal{L}_{1+3}^{\prime \prime} \left\lvert\,=\Phi \dot{x}^{2}+\widetilde{\Phi} \dot{v}_{a}^{2}-\frac{1}{4} \Phi^{-1}\left(\gamma v_{a}-\mu_{a}-c \delta_{a 3} \Phi\right)^{2}-\frac{1}{4} \widetilde{\Phi}^{-1}(\gamma(x+e)-\nu)^{2}\right. \tag{C.19}
\end{equation*}
$$

where the Lagrange multiplier e only ensures that the zero mode \bar{h} vanishes. Hence, its value is $e=-\overline{\left(\widetilde{\Phi}^{-1} x-\nu / \gamma\right)} / \widetilde{\widetilde{\Phi}^{-1}}$. Specializing to $\Phi=x^{-1}$ and $\widetilde{\Phi}=v^{-3}$, one gets

$$
\begin{equation*}
\mathcal{L}_{1+3}^{\prime \prime} \left\lvert\,=x^{-1} \dot{x}^{2}+v^{-3} \dot{v}_{a}^{2}-\frac{1}{4} x\left(\gamma v_{a}-\mu_{a}-c \delta_{a 3} x^{-1}\right)^{2}-\frac{1}{4} v^{3}(\gamma(x+e)-\nu)^{2}\right. \tag{C.20}
\end{equation*}
$$

In order to interpret this Lagrangian, we pass to standard kinetic terms (up to a factor of $\frac{1}{2}$) by changing the radial coordinates via

$$
\begin{equation*}
x=\frac{1}{4} \rho^{2} \quad \text { and } \quad v=4 \sigma^{-2} \quad \text { with } \quad[\rho]=[\sigma]=-\frac{1}{2} \tag{C.21}
\end{equation*}
$$

and arrive at

$$
\begin{equation*}
\mathcal{L}_{1+3}^{\text {cone }} \left\lvert\,=\dot{\rho}^{2}+\dot{\sigma}^{2}+4 \widetilde{\ell}^{2} \sigma^{-2}-\frac{1}{16} \rho^{2}\left(\gamma \sigma^{-2} \vec{e}_{\sigma}-\vec{\mu}-4 c \rho^{-2} \vec{e}_{3}\right)^{2}-\sigma^{-6}\left(\gamma\left(\rho^{2}+4 e\right)-4 \nu\right)^{2}\right., \tag{C.22}
\end{equation*}
$$

where $\tilde{\ell}$ is the angular momentum in σ space, and \vec{e}_{σ} and \vec{e}_{3} denote unit vectors in the σ and 3 directions, respectively. We find a rather complicated potential in the four-dimensional target. If one employs the option (C.11), then linear terms $-\gamma c v_{3}$ and $-4 \gamma c \sigma^{-2} \vec{e}_{3}$ have to be added to (C.20) and (C.22), respectively.

Acknowledgments

This work was partially supported by CNPq and by the Deutsche Forschungsgemeinschaft under grant LE 838/12. M.G. and O.L. acknowledge a PCI-BEV grant and hospitality at CBPF.

References

[1] S. Fedoruk, E. Ivanov and O. Lechtenfeld, "Superconformal mechanics", J. Phys. A: Math. Theor. 45 (2012) 173001 [arXiv:1112.1947[hep-th]].
[2] A. Pashnev and F. Toppan, "On the classification of N-extended supersymmetric quantum mechanical systems", J. Math. Phys. 42 (2001) 5257 [arXiv:hep-th/0010135].
[3] Z. Kuznetsova, M. Rojas and F. Toppan, "Classification of irreps and invariants of N -extended supersymmetric quantum mechanics", JHEP 0603 (2006) 098 [arXiv:hep-th/0511274].
[4] F. Delduc and E. Ivanov, "New model of $\mathrm{N}=8$ superconformal mechanics", Phys. Lett. B 654 (2007) 200 [arXiv:0706.2472[hep-th]].
[5] S. Bellucci, E. Ivanov, S. Krivonos and O. Lechtenfeld, "N=8 superconformal mechanics",
Nucl. Phys. B 684 (2004) 321 [arXiv:hep-th/0312322].
[6] S. Bellucci, E. Ivanov, S. Krivonos and O. Lechtenfeld, " ABC of $\mathrm{N}=8, \mathrm{~d}=1$ supermultiplets", Nucl. Phys. B 699 (2004) 226 [arXiv:hep-th/0406015].
[7] D.-E. Diaconescu and R. Éntin, "A nonrenormalization theorem for the $\mathrm{d}=1, \mathrm{~N}=8$ vector multiplet," Phys. Rev. D 56 (1997) 8045 [arXiv:hep-th/9706059].
[8] S. Khodaee and F. Toppan, "Critical scaling dimension of D-module representations of $\mathrm{N}=4,7,8$ superconformal algebras and constraints on superconformal mechanics", J. Math. Phys. 53 (2012) 103518 [arXiv:1208.3612[hep-th]].
[9] F. Toppan, "Critical D-module reps for finite superconformal algebras and their superconformal mechanics", Talk given at XXIXth ICGTMP, Tianjin 2012, to appear in the proceedings [arXiv:1302.3459[math-ph]].
[10] Z. Kuznetsova and F. Toppan, "D-module representations of $\mathrm{N}=2,4,8$ superconformal algebras and their superconformal mechanics",
J. Math. Phys. 53 (2012) 043513 [arXiv:1112.0995[hep-th]].
[11] M. Gonzales, S. Khodaee and F. Toppan, "On non-minimal $\mathrm{N}=4$ supermultiplets in 1D and their associated sigma models", J. Math. Phys. 52 (2011) 013514 [arXiv:1006.4678[hep-th]].
[12] E. Ivanov, S. Krivonos and O. Lechtenfeld, "New variant of $\mathrm{N}=4$ superconformal mechanics," JHEP 0303 (2003) 014 [arXiv:hep-th/0212303].

[^0]: ${ }^{1}$ The construction fails if $d_{1}=0$ or $d_{2}=0$. There exists, however, a different method which works in all cases [11].
 ${ }^{2}$ Except for $d=3$, where an inhomogeneous deformation yields a background gauge potential, see below.

[^1]: ${ }^{3}$ The ' D condition' actually follows from the ' K condition'.

