Porous medium permeability estimation for well imagery and characterization using complex resistivity spectra

Manuel Blanco Valentin, Márcio Portes de Albuquerque, Marcelo Portes de Albuquerque, Elisângela L. Farias, Clécio Roque De Bom, Maury Duarte Correia, Yann Le Guével

Resumo


Abstract: Formation permeability plays a crucial role in oil/gas industry as it helps geologists understand how the soil was formed and the most likely location of a certain reservoir. It also aids engineers and analysts to know whether that reservoir is exploitable or not. However, these measurements are very costly and difficult to obtain. In the past decades, several methods have appeared for estimating permeability from different sources like NMR data or well-logs. In this work we tested the relationship between complex impedance spectra and permeability measurements, showing that –for the tested porous medium– it does exist a correlation of almost 98% between the obtained complex electrical impedance spectra and the permeability of those mediums. This link could be used in the oil/gas industry adapting the current electrical imaging tools to perform sweep measurements instead of single-frequency measurements, which could be used, in theory, to obtain permeability measurements with spacial resolution. On the other hand, we also designed and implemented an imaging tool that relies on this principle to obtain complex impedance volume images.

 

Resumo: As medidas de permeabilidade de formaçao são chave no relacionado à caracterizacão de solos. Este parâmetro tem um papel fundamental na indústria de gás e óleo, pois ajuda os geólogos a entender como um certo solo foi formado e a possível e mais provavel localizacão de um certo reservatório; e ajuda os engenheiros e analistas a saber se um certo reservatório é explorável ou não. No entanto, medidas de permeabilidade são muito custosas e difíceis de se obter. Nas ultimas décadas apareceram novos métodos de estimativa da permeabilidade a partir de fontes de dados como NMR ou logs de poços. Neste trabalho testamos a relaçao que medidas de impedância complexa têm com medidas de permeabilidade, provando que –para os meios porosos testados– existe uma correlação de quase 98% entre os espectros de impedância complexa obtidos e a permeabilidade desses meios. Esta relação poderia ser utilizada na indústria de óleo e gás adaptando os sistemas de imageamento elétricos atuais para realizar varreduras de frequência, ao invés de medidas monofrequenciais, as quais poderiam ser posteriormente usadas para criar imagens de permeabilidade estimada. Por outro lado, também realizamos o design e implementação de uma ferramenta de imageamento baseada no princípio de obtenção de imagens de espectros complexos impedancia elétrica. 


Palavras-chave


Complex; Resistivity; Spectra; Permeability; Estimation; Porosity; Borehole; Image; Oil; Reservoir

Texto completo:

PDF

Referências


Philip Kearey, Michael Brooks, and Ian Hill. An introduction

to geophysical exploration. John Wiley & Sons, 2013.

Rodney Calvert. Insights and methods for 4D reservoir monitoring

and characterization. Society of Exploration Geophysicists

and European Association of Geoscientists and Engineers,

Darwin V Ellis and Julian M Singer. Well logging for earth

scientists, volume 692. Springer, 2007.

Gustave E Archie et al. The electrical resistivity log as an aid

in determining some reservoir characteristics. Transactions of

the AIME, 146(01):54–62, 1942.

Stefan M Luthi. Electrical borehole imaging. In Geological

Well Logs, pages 74–123. Springer, 2001.

Henry Darcy. Les fontaines publiques de la ville de Dijon:

exposition et application... Victor Dalmont, 1856.

API RP40. Recommended practices for core analysis. Feb,

LJ Klinkenberg et al. The permeability of porous media to liquids

and gases. In Drilling and production practice. American

Petroleum Institute, 1941.

Aytekin Timur et al. An investigation of permeability, porosity,

and residual water saturation relationships. In SPWLA

th annual logging symposium. Society of Petrophysicists and

Well-Log Analysts, 1968.

A Kohli and P Arora. Application of artificial neural networks

for well logs. In IPTC 2014: International Petroleum Technology

Conference, 2014.

Shahab Mohaghegh, Reza Arefi, Samuel Ameri, D Rose, et al.

Design and development of an artificial neural network for estimation

of formation permeability. SPE Computer Applications,

(06):151–154, 1995.

Baouche Rafik and Baddari Kamel. Prediction of permeability

and porosity from well log data using the nonparametric regression

with multivariate analysis and neural network, hassi

rmel field, algeria. Egyptian Journal of Petroleum, 2016.

Salaheldin Elkatatny, Mohamed Mahmoud, Zeeshan Tariq,

and Abdulazeez Abdulraheem. New insights into the prediction

of heterogeneous carbonate reservoir permeability from

well logs using artificial intelligence network. Neural Computing

and Applications, pages 1–11, 2017.

Dahai Chang, Harold J Vinegar, Chris Morriss, Chris Straley,

et al. Effective porosity, producible fluid and permeability

in carbonates from nmr logging. In SPWLA 35th Annual

Logging Symposium. Society of Petrophysicists and Well-Log

Analysts, 1994.

Hugh Daigle and Brandon Dugan. Extending nmr data for

permeability estimation in fine-grained sediments. Marine and

Petroleum Geology, 26(8):1419–1427, 2009.

Peter J Tumidajski, AS Schumacher, S Perron, P Gu, and

JJ Beaudoin. On the relationship between porosity and electrical

resistivity in cementitious systems. Cement and concrete

research, 26(4):539–544, 1996.

Jan Henrik Norbisrath. Complex resistivity spectra in relation

to multiscale pore geometry in carbonates and mixedsiliciclastic

rocks. PhD thesis, University of Miami, 2016.

Maosong Tong and Honggen Tao. Permeability estimating

from complex resistivity measurement of shaly sand reservoir.

Geophysical Journal International, 173(2):733–739, 2008.

Jan Henrik Norbisrath. Complex resistivity spectra in relation

to multiscale pore geometry in carbonates and mixedsiliciclastic

rocks. PhD thesis, University of Miami, 2016.

David Huntley. Relations between permeability and electrical

resistivity in granular aquifers. Groundwater, 24(4):466–474,

Leonardo Pereira Marinho. Aplicac¸ao do modelo de dias na ˜

estimativa da permeabilidade hidraulica em amostras de aren- ´

itos, a partir da medida do efeito de polarizac¸ao el ˜ etrica in- ´

duzida, 2005.

Bruno Chencarek, Maury Duarte Correia, Moacyr do Nascimento,

Alexandre M. Souza, and Ivan S. Oliveira. Processo

para produc¸ao e caracterizac¸ ˜ ao de rochas sint ˜ eticas com ´

porosidade controlada para aplicac¸oes em petrof ˜ ´ısica por rmn

de alto e baixo campo. Notas Tecnicas do CBPF ´ , 2017.

Analog Devices. Ad5933 datasheet, 2007.

Philips Semiconductors. The i2c-bus specification. Philips

Semiconductors, 9397(750):00954, 2000.

Javier Ferreira, Fernando Seoane, Antonio Ansede, and Ramon

Bragos. Ad5933-based spectrometer for electrical

bioimpedance applications. In Journal of Physics: Conference

Series, volume 224, page 012011. IOP Publishing, 2010.

C Margo, J Katrib, Mustapha Nadi, and Amar Rouane. A

four-electrode low frequency impedance spectroscopy measurement

system using the ad5933 measurement chip. Physiological

measurement, 34(4):391, 2013.

Eben Upton and Gareth Halfacree. Raspberry Pi user guide.

John Wiley & Sons, 2014.

Texas Instruments. Cd4066b cmos quad bilateral switch,

Fairchild Semiconductor. Dm74ls154 4-line to 16-line decoder/demultiplexer.

Retrieved April, 20:2004, 2000.




DOI: http://dx.doi.org/10.7437/nt-cbpf.v8i1.263