Desenvolvimento de um sistema de eletrodeposição de filmes finos de ZnO para EGFET como sensor de pH
     Development of an electrodeposition system of ZnO thin films to EGFET as pH sensor

Edgar Monteiro da Silva, Pablo Diniz Batista

Resumo


A partir de 2004 aumentou o interesse da pesquisa científica em sensores de pH baseados em filme fino de óxido de zinco utilizando transistores de efeito de campo. A produção e caracterização destes sensores normalmente são feitas a partir de equipamentos comerciais, que nem sempre estão disponíveis para todos os pesquisadores. Dentro dessa perspectiva e com o objetivo de colaborar com a pesquisa nesta área, este trabalho propõe a construção de um sistema de eletrodeposição com baixo custo para facilitar a produção, a caracterização e a investigação do filme de ZnO como sensor de pH. Este projeto está baseado no paradigma {\it open source hardware}.


Palavras-chave


sensor de pH, ZnO, EGFET, eletrodeposição, potenciostato.

Texto completo:

PDF

Referências


bibitem{REF01} Lukasiak, L. and et al., emph{History of Semiconductors}, Jornal of Telecomunications and information tecnology 1/2010.

bibitem{REF02} Robert, G. A., emph{The other transistor:early history of the metal-oxide-semiconduaor fielld-effect transistor}, Engineering Science and Education Journal (1998). Part 1 Vol 02, pp 8.

bibitem{REF03} Middelhoek, S., emph{Celebration of the tenth transducers conference: The past, present and future of transducer research and development}, Sensors and Actuators 82 (2000) 2-23.

%Bergveld

bibitem{REF04} Bergveld, P., emph{Development of an ion-sensitive solid-state device for neurophysiological measurements}, IEEE Trans Biomet. Engineering, 1970, 17, 70.

bibitem{REF05} Bergveld, P., emph{The future of Biosesnosr}, Sensors and Actuators A 56 (1996) 65-73

bibitem{REF06} Bergggeld, P. emph{Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the net 30 years}, Sensors and Actuators B (88) 1-20.

%ISFET application

bibitem{REF07} Chaubey A. et al., emph{Mediated Biosensors}, Biosensors & Biolectronics 17 (2002) 441-456.

bibitem{REF08} Thévenot, D. R. and et al., emph{Electrochemical biosensors: recommended definititions and calssifications}, Biosensors & Biolectronics, 16 (2001) 121-131

bibitem{REF09} Cunningham, A. J., emph{Introduction to Bionalytical Sensors}. pp 2006 (1998)

bibitem{REF10} Cass, A.E.G , emph{Biosensors: A pratical approach}. pp 171 (1990).

bibitem{REF11} Malhotra, B. D. and et al. emph{Biosensors for clinical diagnostics industry}, Sensors and Actuators B 6931 (2003).

bibitem{REF12} Schoning, M. J. and et al., emph{Recent advances in biologically sensitive field-effect transistor}, Analyst 127 (2002) 1137-1151.

bibitem{REF13} Yuqing. M and et al, emph{Ion sensitive field effect transducer based biosensors}, Biotechnology Advances 21 (2003) 527-534.

bibitem{REF14} Spiegel, J Van Der and et al., emph{The extended gate chemically sensitive field effect transistor as multi-species microprobe}, Sensors and Actuators 4 (1983) 291-298.

bibitem{REF15} Yin, L. and at el., emph{Separate structure extended gate H+ ion sensitive field effect transistor on a glass substrate}, Sensor and Actuators B 71 (2000) 106-111.

bibitem{REF16} Chi, L. and at el., emph{Study on extended gate field effect transistor with tin oxide sensing membrane}, Materials Chemistry and Physics 63 (2000) 19-23.

bibitem{REF17} Yin, L.T, and et al.,emph{Study of indium tin oxide thin film for separative extended gate ISFET}, Materials Chemistry and Physics 70 (2001) 12-16.

bibitem{REF18} Chou, J.C, and et al., emph{$SnO_{2}$ Sepratative Structure Extended Gte H+-Ion Sensitive Field Effect Transistor by Sol-Gel Technology and Readout Circuit Developed by Source Follower.} Journal Applied Physics Vol 42 (2003) pp 6790-6794.

bibitem{REF19} Batista, P.D. and et al., emph{ZnO Extended-gate field-effect transistor as pH

sensors}, Applied Physics Letter 87, 1435508 (2005)

bibitem{REF20} Batista, P.D. and et al., emph{$SnO_{2}$ Extended Gate Field-Effect Transistor as pH sensor}, Brazilian Journal of Physics, vol 36, no 2A (2006).

bibitem{REF21} Batista, P.D and et al., emph{Polycrystalline fluorine-doped tin oxide as sensoring thin film in EGFET pH sensor}, Journal Material Science (2010) 45:5478-5481.

%EGFET Application

bibitem{REF22} Chi, L.Land et al., emph{Study on separative structure of EnFet to detect acetylcholine}, Sensor and Actuators B 71 (2000) 68-72

bibitem{REF23} Chen, J.C and et al., emph{Portable urea biosensor on the extended gate field effec transistor.}, Sensors and Actuators B 91 (2003) 180-186.

bibitem{REF24} Al-Hilli, S.A and et. al., emph{ZnO nanorods as an intracellular sensor for pH measurements}, Micro and Nano Technologies in Bioanalysis Methods in Molecular Biology. Vol: 544, 2009, pp 187-200.

bibitem{REF25} Chiu, Y.S. and et al.,emph{pH Sensor Investigation of Various-Length Photoelectrochemical Passivated ZnO Nanorod Arrays}, Journal of the Electrochemical Society, 2011.

bibitem{REF26} Chang S.P. and et al., emph{ZnO-Nanowire-Based Extended-Gate Field-Effect-Transistor pH Sensors Prepared on Glass Substrate}, Science of Advanced Materials, 2012.

bibitem{REF27} Chiu Y.S. and et al., emph{Nanostructured EGFET pH Sensors With Surface-Passivated ZnO Thin-Film and Nanorod Array}, Sensors Journal, IEEE, 2012.

bibitem{REF28} Li, H.H and et al., emph{Coaxial-structured ZnO-silicon nanowires extended-gate field-effect transistor as pH sensor}, Thin Solid Films. Elsevier: 2013.

bibitem{REF29} Huang, B.R. and et al., emph{ZnO-Silicon Nanowire Hybrids Extended-Gate Field-Effect Transistors as pH Sensors}, Journal of The Electrochemical Society, 2013.

bibitem{REF30} Lee, C.T. and et al., emph{Integrated pH Sensors and Performance Improvement Mechanism of ZnO-Based Ion-Sensitive Field-Effect Transistors}, Sensors Journal, 2014.

bibitem{REF31} Maiolo,L.et al., emph{Flexible pH sensors based on polysilicon thin film transistors and ZnO nanowalls}, Applied Physics Letters, 2014.

bibitem{REF32} Yang, P.Y. and et al., emph{pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures}, Device Letters, IEEE, 2011.

bibitem{REF33} Lee, C.T. and et al., emph{Investigation of a Photo electrochemical Passivated ZnO-Based Glucose Biosensor}, Sensors 2011, 11, 4648-4655.

bibitem{REF34} Oh, H. and et al., emph{Development of a high sensitive pH sensor based on shear horizontal surface acoustic wave with ZnO nanoparticles}, Microelectronic Engineering, Vol. 111, Elsevier: November 2013, Pages 154–159, 2013.

bibitem{REF35} Chiu, Y.S. et al., emph{Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors}, Sensors and Actuators B. Elsevier: Chemical, vol 188, November 2013, pp 944-948.

bibitem{REF36} Izaki, M. and et al., emph{Transparent zinc oxide films prepared by electrochemical reaction}, Applied Physics Letter,68, 2439 (1996);

bibitem{REF37} Dalchile, E.A. and et al., emph{Electrodeposition of ZnO thin films on n-Si (100)}, Solar Energy Materials & Solar Cells, 70, (2001), p: 245-254.

bibitem{REF38} Marotti, R.E. and et al., emph{Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential}, Solar Energy Materials & Solar Cells, 82, (2004), p: 85-103.

bibitem{REF39} Mahalingam, T. and et al, emph{Electrodeposition and characterization of transparent ZnO thin films}, Solar Energy Materials & Solar Cells, 88, (2005), p: 227-235.

bibitem{REF40} Leprince-Wang, Y. and et al., emph{Structure study of electrodeposited ZnO nanowires}, Microelectronics Journal, 36, 2005, p: 625-628.

bibitem{REF41} Goux, A. et al., emph{Temperature effects on ZnO electrodeposition}, Electrochimica Acta, 50, (2005), p: 2239-2248.

bibitem{REF42} Marrotti, R. and et al., emph{Crystallite size dependence of band gap energy for electrodeposited grown at different temperatures}, Solar Energy Materials & Solar Cells, 90, (2006), p: 2356-2361.

bibitem{REF43} Ren, T. and et al., emph{Optical absorption edge shifts in electrodeposited ZnO thin films}, Thin Solid Films, 515, (2007), p: 7976-7983.

bibitem{REF44} Wellings,J.S. and et al., emph{Growth and characterization of electrodeposited ZnO thin films}, Thin Solid Films, 516, (2008), p: 3893-3898.

bibitem{REF45} Chatman, S. and et al., emph{The Effect of Synthesis Conditions and Humidity on Current-Voltage Relations in Electrodeposited ZnO-Based Schottky Junction}, Applied Materials & Interfaces, Vol. 1, (2009), No 3, p: 552-558.

bibitem{REF46} Yang, H. and et al.,emph{Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid}, Electrochimica Acta, 147, (2014), p: 513-519.

bibitem{REF47} Chen, Y.H. and et al., emph{Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition}, Thin Solid Films, 570, (2014), p: 303-309.

bibitem{REF48} Berruet, M. and et al., emph{ZnO and copper indium chalcogenide hetero junction prepared by inexpensive methods}, Materials Chemistry and Physics, 148, (2014), p: 1071-1077.

bibitem{REF49} Batista P.D., emph{An embedded measurement system for the electrical characterization of EGFET as a pH sensor}, Measurement Science and Technology 25 (2014) 027001 (6pp).




DOI: http://dx.doi.org/10.7437/nt-cbpf.v7i1.244