Translations and reflections on the torus: Identities for discrete Wigner functions and transforms

Marcos Saraceno, Alfredo ozorio


A finite Hilbert space can be associated to a periodic phase space, that is, a torus. A finite subgroup of operators corresponding to reflections and translations on the torus form respectively the basis for the discrete Weyl representation, including the Wigner function, and for its Fourier conjugate, the chord representation. They are invariant under Clifford transformations and obey analogous product rules to the continuous representations, so allowing for the calculation of expectations and correlations for observables. We here import new identities from the continuum for products of pure state Wigner and chord functions, involving, for instance the inverse phase space participation ratio and correlations of a state with its translate. New identities are derived involving transition Wigner or chord functions of transition operators |ψ1ψ2|. Extension of the reflection and translation operators to a doubled torus phase space leads to the representation of superoperators and so to the construction of the propagator of Wigner functions from the Weyl representation of the evolution operator.

Texto completo:



Weyl H 1950 The Theory of Groups and Quantum Mechanics, Dover, New York [2] Wigner E P 1932 Phys. Rev. 40 749

Grossmann A 1976 Commun. Math. Phys. 48 191

Royer A 1977 Phys. Rev. A 15, 449

Hannay J H, Berry M V 1980 Physica D 1 267.

Berry M V 1977 Phil. Trans. R. Soc. Lon. 287 237

Rivas A M F Ozorio de Almeida, 1999 Ann. Phys. (N.Y.)276 223

Wootters W K, 1987 Ann. Phys. (N.Y.)176 1

Leonhardt U, 1996 Phys. Rev. A53 2998

Bouzouina A, De Bi`evre S, 1996 Comm. Math. Phys. 178 83

Gibbons K S, Hoffman M J and Wootters W K 2004 Phys. Rev. A 70 062101

Miquel C, Paz J P, Saraceno M, Phys. Rev.A 65 6230914

Vourdas A 2004 Rep. Prog. Phys.67 267

Rivas A M, Saraceno M, Ozorio de Almeida A M 2000 Nonlinearity 13 341-376

Ratiu T S 1999 Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol 17. Springer,New York, NY

Varilly J C, Garcia-Bondia J M 1989 Ann. Phys. (N.Y.) 190 107

Tilma T, Everitt M J, Samson J H, Munro W J, Nemoto K 2016 Phys. Rev. Lett. 117 180401.

Appleby D M 2005 J. Math. Phys., 46:052107

Saraceno M and Ozorio de Almeida A M 2016, J. Phys. A: Math. Theor 49 145302

Amiet J P and Huguenin P 1980 Mécaniques classique et quantique dans l’espace de phase Universite’ de Neuchâtel Amiet J P and Huguenin P 1980 Helv. Phys. Acta. 53, 377

Zurek W H 2001 Nature 412 712

Ozorio de Almeida A M 1998 Phys. Rep. 295, 265

Chountasis S and Vourdas A 1998 Phys. Rev. A58 848 - 855

Ozorio de Almeida A M, Vallejos R O and Saraceno M 2005 J. Phys. A: Math. Gen 38 1473-1490

A. M. Ozorio de Almeida, R. O. Vallejos and E. Zambrano J. Phys. A 46 135304

Schwinger J 1960 Proc. Natl. Acad. Sci. U.S.A., 46:570

Saraceno M, Ermann L and Cormick C 2017 Phys. Rev A 95 03210

Scott A J and Grassl M 2010 J. Math. Phys., 51:042203

Welch L R 1974 IEEE Trans. on Inf. Theory 20 397

Schachenmayer J, Pikovsky A and Rey A M (2015) Phys. Rev. X 5 011022

Choi M D 1975 Lin. Alg. Appl. 10, 285

Bengtsson I and Zyczkowski K 2006 Geometry of Quantum States (Cambridge University Press, Cambridge)

M. V. Berry 1989 Proc. R. Soc. Lond.A 423 219-231.

Kraus K 1983 States, Effects and Operations, Lecture Notes in Physics 190 (Berlin: Springer-Verlag)


  • Não há apontamentos.